ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssrnres Unicode version

Theorem ssrnres 4981
Description: Subset of the range of a restriction. (Contributed by NM, 16-Jan-2006.)
Assertion
Ref Expression
ssrnres  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )

Proof of Theorem ssrnres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3297 . . . . 5  |-  ( C  i^i  ( A  X.  B ) )  C_  ( A  X.  B
)
2 rnss 4769 . . . . 5  |-  ( ( C  i^i  ( A  X.  B ) ) 
C_  ( A  X.  B )  ->  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( A  X.  B ) )
31, 2ax-mp 5 . . . 4  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  ran  ( A  X.  B
)
4 rnxpss 4970 . . . 4  |-  ran  ( A  X.  B )  C_  B
53, 4sstri 3106 . . 3  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  B
6 eqss 3112 . . 3  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  ( ran  ( C  i^i  ( A  X.  B ) ) 
C_  B  /\  B  C_ 
ran  ( C  i^i  ( A  X.  B
) ) ) )
75, 6mpbiran 924 . 2  |-  ( ran  ( C  i^i  ( A  X.  B ) )  =  B  <->  B  C_  ran  ( C  i^i  ( A  X.  B ) ) )
8 ssid 3117 . . . . . . . 8  |-  A  C_  A
9 ssv 3119 . . . . . . . 8  |-  B  C_  _V
10 xpss12 4646 . . . . . . . 8  |-  ( ( A  C_  A  /\  B  C_  _V )  -> 
( A  X.  B
)  C_  ( A  X.  _V ) )
118, 9, 10mp2an 422 . . . . . . 7  |-  ( A  X.  B )  C_  ( A  X.  _V )
12 sslin 3302 . . . . . . 7  |-  ( ( A  X.  B ) 
C_  ( A  X.  _V )  ->  ( C  i^i  ( A  X.  B ) )  C_  ( C  i^i  ( A  X.  _V ) ) )
1311, 12ax-mp 5 . . . . . 6  |-  ( C  i^i  ( A  X.  B ) )  C_  ( C  i^i  ( A  X.  _V ) )
14 df-res 4551 . . . . . 6  |-  ( C  |`  A )  =  ( C  i^i  ( A  X.  _V ) )
1513, 14sseqtrri 3132 . . . . 5  |-  ( C  i^i  ( A  X.  B ) )  C_  ( C  |`  A )
16 rnss 4769 . . . . 5  |-  ( ( C  i^i  ( A  X.  B ) ) 
C_  ( C  |`  A )  ->  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( C  |`  A ) )
1715, 16ax-mp 5 . . . 4  |-  ran  ( C  i^i  ( A  X.  B ) )  C_  ran  ( C  |`  A )
18 sstr 3105 . . . 4  |-  ( ( B  C_  ran  ( C  i^i  ( A  X.  B ) )  /\  ran  ( C  i^i  ( A  X.  B ) ) 
C_  ran  ( C  |`  A ) )  ->  B  C_  ran  ( C  |`  A ) )
1917, 18mpan2 421 . . 3  |-  ( B 
C_  ran  ( C  i^i  ( A  X.  B
) )  ->  B  C_ 
ran  ( C  |`  A ) )
20 ssel 3091 . . . . . . 7  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
y  e.  ran  ( C  |`  A ) ) )
21 vex 2689 . . . . . . . 8  |-  y  e. 
_V
2221elrn2 4781 . . . . . . 7  |-  ( y  e.  ran  ( C  |`  A )  <->  E. x <. x ,  y >.  e.  ( C  |`  A ) )
2320, 22syl6ib 160 . . . . . 6  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  ->  E. x <. x ,  y
>.  e.  ( C  |`  A ) ) )
2423ancrd 324 . . . . 5  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
( E. x <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) ) )
2521elrn2 4781 . . . . . 6  |-  ( y  e.  ran  ( C  i^i  ( A  X.  B ) )  <->  E. x <. x ,  y >.  e.  ( C  i^i  ( A  X.  B ) ) )
26 elin 3259 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( C  i^i  ( A  X.  B ) )  <-> 
( <. x ,  y
>.  e.  C  /\  <. x ,  y >.  e.  ( A  X.  B ) ) )
27 opelxp 4569 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
2827anbi2i 452 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  C  /\  <. x ,  y >.  e.  ( A  X.  B ) )  <->  ( <. x ,  y >.  e.  C  /\  ( x  e.  A  /\  y  e.  B
) ) )
2921opelres 4824 . . . . . . . . . 10  |-  ( <.
x ,  y >.  e.  ( C  |`  A )  <-> 
( <. x ,  y
>.  e.  C  /\  x  e.  A ) )
3029anbi1i 453 . . . . . . . . 9  |-  ( (
<. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
)  <->  ( ( <.
x ,  y >.  e.  C  /\  x  e.  A )  /\  y  e.  B ) )
31 anass 398 . . . . . . . . 9  |-  ( ( ( <. x ,  y
>.  e.  C  /\  x  e.  A )  /\  y  e.  B )  <->  ( <. x ,  y >.  e.  C  /\  ( x  e.  A  /\  y  e.  B
) ) )
3230, 31bitr2i 184 . . . . . . . 8  |-  ( (
<. x ,  y >.  e.  C  /\  (
x  e.  A  /\  y  e.  B )
)  <->  ( <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) )
3326, 28, 323bitri 205 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( C  i^i  ( A  X.  B ) )  <-> 
( <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
3433exbii 1584 . . . . . 6  |-  ( E. x <. x ,  y
>.  e.  ( C  i^i  ( A  X.  B
) )  <->  E. x
( <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
35 19.41v 1874 . . . . . 6  |-  ( E. x ( <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
)  <->  ( E. x <. x ,  y >.  e.  ( C  |`  A )  /\  y  e.  B
) )
3625, 34, 353bitri 205 . . . . 5  |-  ( y  e.  ran  ( C  i^i  ( A  X.  B ) )  <->  ( E. x <. x ,  y
>.  e.  ( C  |`  A )  /\  y  e.  B ) )
3724, 36syl6ibr 161 . . . 4  |-  ( B 
C_  ran  ( C  |`  A )  ->  (
y  e.  B  -> 
y  e.  ran  ( C  i^i  ( A  X.  B ) ) ) )
3837ssrdv 3103 . . 3  |-  ( B 
C_  ran  ( C  |`  A )  ->  B  C_ 
ran  ( C  i^i  ( A  X.  B
) ) )
3919, 38impbii 125 . 2  |-  ( B 
C_  ran  ( C  i^i  ( A  X.  B
) )  <->  B  C_  ran  ( C  |`  A ) )
407, 39bitr2i 184 1  |-  ( B 
C_  ran  ( C  |`  A )  <->  ran  ( C  i^i  ( A  X.  B ) )  =  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   _Vcvv 2686    i^i cin 3070    C_ wss 3071   <.cop 3530    X. cxp 4537   ran crn 4540    |` cres 4541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-cnv 4547  df-dm 4549  df-rn 4550  df-res 4551
This theorem is referenced by:  rninxp  4982
  Copyright terms: Public domain W3C validator