![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sstri | Unicode version |
Description: Subclass transitivity inference. (Contributed by NM, 5-May-2000.) |
Ref | Expression |
---|---|
sstri.1 |
![]() ![]() ![]() ![]() |
sstri.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sstri |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstri.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sstri.2 |
. 2
![]() ![]() ![]() ![]() | |
3 | sstr2 3007 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | mp2 16 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 |
This theorem is referenced by: difdif2ss 3228 difdifdirss 3334 snsstp1 3543 snsstp2 3544 nnregexmid 4368 dmexg 4624 rnexg 4625 ssrnres 4793 cossxp 4873 funinsn 4979 fabexg 5108 foimacnv 5175 ssimaex 5266 oprabss 5621 tposssxp 5898 dmaddpi 6577 dmmulpi 6578 ltrelxr 7240 nnsscn 8111 nn0sscn 8360 nn0ssq 8794 nnssq 8795 qsscn 8797 fzval2 9108 fzossnn 9275 fzo0ssnn0 9301 serige0 9570 expcl2lemap 9585 rpexpcl 9592 expge0 9609 expge1 9610 infssuzcldc 10491 isprm3 10644 |
Copyright terms: Public domain | W3C validator |