ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssun Unicode version

Theorem ssun 3152
Description: A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.)
Assertion
Ref Expression
ssun  |-  ( ( A  C_  B  \/  A  C_  C )  ->  A  C_  ( B  u.  C ) )

Proof of Theorem ssun
StepHypRef Expression
1 ssun3 3138 . 2  |-  ( A 
C_  B  ->  A  C_  ( B  u.  C
) )
2 ssun4 3139 . 2  |-  ( A 
C_  C  ->  A  C_  ( B  u.  C
) )
31, 2jaoi 669 1  |-  ( ( A  C_  B  \/  A  C_  C )  ->  A  C_  ( B  u.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 662    u. cun 2972    C_ wss 2974
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987
This theorem is referenced by:  pwunss  4040  pwssunim  4041
  Copyright terms: Public domain W3C validator