ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssuni Unicode version

Theorem ssuni 3631
Description: Subclass relationship for class union. (Contributed by NM, 24-May-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Assertion
Ref Expression
ssuni  |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  C_  U. C )

Proof of Theorem ssuni
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2143 . . . . . . 7  |-  ( x  =  B  ->  (
y  e.  x  <->  y  e.  B ) )
21imbi1d 229 . . . . . 6  |-  ( x  =  B  ->  (
( y  e.  x  ->  y  e.  U. C
)  <->  ( y  e.  B  ->  y  e.  U. C ) ) )
3 elunii 3614 . . . . . . 7  |-  ( ( y  e.  x  /\  x  e.  C )  ->  y  e.  U. C
)
43expcom 114 . . . . . 6  |-  ( x  e.  C  ->  (
y  e.  x  -> 
y  e.  U. C
) )
52, 4vtoclga 2665 . . . . 5  |-  ( B  e.  C  ->  (
y  e.  B  -> 
y  e.  U. C
) )
65imim2d 53 . . . 4  |-  ( B  e.  C  ->  (
( y  e.  A  ->  y  e.  B )  ->  ( y  e.  A  ->  y  e.  U. C ) ) )
76alimdv 1801 . . 3  |-  ( B  e.  C  ->  ( A. y ( y  e.  A  ->  y  e.  B )  ->  A. y
( y  e.  A  ->  y  e.  U. C
) ) )
8 dfss2 2989 . . 3  |-  ( A 
C_  B  <->  A. y
( y  e.  A  ->  y  e.  B ) )
9 dfss2 2989 . . 3  |-  ( A 
C_  U. C  <->  A. y
( y  e.  A  ->  y  e.  U. C
) )
107, 8, 93imtr4g 203 . 2  |-  ( B  e.  C  ->  ( A  C_  B  ->  A  C_ 
U. C ) )
1110impcom 123 1  |-  ( ( A  C_  B  /\  B  e.  C )  ->  A  C_  U. C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1283    = wceq 1285    e. wcel 1434    C_ wss 2974   U.cuni 3609
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-in 2980  df-ss 2987  df-uni 3610
This theorem is referenced by:  elssuni  3637  uniss2  3640  ssorduni  4239
  Copyright terms: Public domain W3C validator