![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssv | Unicode version |
Description: Any class is a subclass of the universal class. (Contributed by NM, 31-Oct-1995.) |
Ref | Expression |
---|---|
ssv |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 2611 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ssriv 3004 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-v 2604 df-in 2980 df-ss 2987 |
This theorem is referenced by: ddifss 3209 inv1 3287 unv 3288 vss 3298 disj2 3306 pwv 3608 trv 3895 xpss 4474 djussxp 4509 dmv 4579 dmresi 4691 resid 4692 ssrnres 4793 rescnvcnv 4813 cocnvcnv1 4861 relrelss 4874 dffn2 5078 oprabss 5621 ofmres 5794 f1stres 5817 f2ndres 5818 |
Copyright terms: Public domain | W3C validator |