ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  stoic4b Unicode version

Theorem stoic4b 1338
Description: Stoic logic Thema 4 version b.

This is version b, which is with the phrase "or both". See stoic4a 1337 for more information. (Contributed by David A. Wheeler, 17-Feb-2019.)

Hypotheses
Ref Expression
stoic4b.1  |-  ( (
ph  /\  ps )  ->  ch )
stoic4b.2  |-  ( ( ( ch  /\  ph  /\ 
ps )  /\  th )  ->  ta )
Assertion
Ref Expression
stoic4b  |-  ( (
ph  /\  ps  /\  th )  ->  ta )

Proof of Theorem stoic4b
StepHypRef Expression
1 stoic4b.1 . . 3  |-  ( (
ph  /\  ps )  ->  ch )
213adant3 935 . 2  |-  ( (
ph  /\  ps  /\  th )  ->  ch )
3 simp1 915 . 2  |-  ( (
ph  /\  ps  /\  th )  ->  ph )
4 simp2 916 . 2  |-  ( (
ph  /\  ps  /\  th )  ->  ps )
5 simp3 917 . 2  |-  ( (
ph  /\  ps  /\  th )  ->  th )
6 stoic4b.2 . 2  |-  ( ( ( ch  /\  ph  /\ 
ps )  /\  th )  ->  ta )
72, 3, 4, 5, 6syl31anc 1149 1  |-  ( (
ph  /\  ps  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    /\ w3a 896
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-3an 898
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator