ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subadd Unicode version

Theorem subadd 7378
Description: Relationship between subtraction and addition. (Contributed by NM, 20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
Assertion
Ref Expression
subadd  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  C  <->  ( B  +  C )  =  A ) )

Proof of Theorem subadd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 subval 7367 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  -  B
)  =  ( iota_ x  e.  CC  ( B  +  x )  =  A ) )
21eqeq1d 2090 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  -  B )  =  C  <-> 
( iota_ x  e.  CC  ( B  +  x
)  =  A )  =  C ) )
323adant3 959 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  C  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
4 negeu 7366 . . . . 5  |-  ( ( B  e.  CC  /\  A  e.  CC )  ->  E! x  e.  CC  ( B  +  x
)  =  A )
5 oveq2 5551 . . . . . . 7  |-  ( x  =  C  ->  ( B  +  x )  =  ( B  +  C ) )
65eqeq1d 2090 . . . . . 6  |-  ( x  =  C  ->  (
( B  +  x
)  =  A  <->  ( B  +  C )  =  A ) )
76riota2 5521 . . . . 5  |-  ( ( C  e.  CC  /\  E! x  e.  CC  ( B  +  x
)  =  A )  ->  ( ( B  +  C )  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
84, 7sylan2 280 . . . 4  |-  ( ( C  e.  CC  /\  ( B  e.  CC  /\  A  e.  CC ) )  ->  ( ( B  +  C )  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
983impb 1135 . . 3  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  A  e.  CC )  ->  (
( B  +  C
)  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
1093com13 1144 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( B  +  C
)  =  A  <->  ( iota_ x  e.  CC  ( B  +  x )  =  A )  =  C ) )
113, 10bitr4d 189 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( A  -  B
)  =  C  <->  ( B  +  C )  =  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   E!wreu 2351   iota_crio 5498  (class class class)co 5543   CCcc 7041    + caddc 7046    - cmin 7346
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288  ax-resscn 7130  ax-1cn 7131  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-sub 7348
This theorem is referenced by:  subadd2  7379  subsub23  7380  pncan  7381  pncan3  7383  addsubeq4  7390  subsub2  7403  renegcl  7436  subaddi  7462  subaddd  7504  fzen  9138  nn0ennn  9515  odd2np1  10417  divalgb  10469
  Copyright terms: Public domain W3C validator