ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submul2 Unicode version

Theorem submul2 7570
Description: Convert a subtraction to addition using multiplication by a negative. (Contributed by NM, 2-Feb-2007.)
Assertion
Ref Expression
submul2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C
) ) )

Proof of Theorem submul2
StepHypRef Expression
1 mulneg2 7567 . . . . 5  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  -u C
)  =  -u ( B  x.  C )
)
21adantl 271 . . . 4  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( B  x.  -u C )  = 
-u ( B  x.  C ) )
32oveq2d 5559 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  +  ( B  x.  -u C ) )  =  ( A  +  -u ( B  x.  C
) ) )
4 mulcl 7162 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  e.  CC )
5 negsub 7423 . . . 4  |-  ( ( A  e.  CC  /\  ( B  x.  C
)  e.  CC )  ->  ( A  +  -u ( B  x.  C
) )  =  ( A  -  ( B  x.  C ) ) )
64, 5sylan2 280 . . 3  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  +  -u ( B  x.  C ) )  =  ( A  -  ( B  x.  C )
) )
73, 6eqtr2d 2115 . 2  |-  ( ( A  e.  CC  /\  ( B  e.  CC  /\  C  e.  CC ) )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C
) ) )
873impb 1135 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  -  ( B  x.  C ) )  =  ( A  +  ( B  x.  -u C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434  (class class class)co 5543   CCcc 7041    + caddc 7046    x. cmul 7048    - cmin 7346   -ucneg 7347
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288  ax-resscn 7130  ax-1cn 7131  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-sub 7348  df-neg 7349
This theorem is referenced by:  cjap  9931
  Copyright terms: Public domain W3C validator