ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  subneintr2d Unicode version

Theorem subneintr2d 8112
Description: Introducing subtraction on both sides of a statement of inequality. Contrapositive of subcan2d 8108. (Contributed by David Moews, 28-Feb-2017.)
Hypotheses
Ref Expression
negidd.1  |-  ( ph  ->  A  e.  CC )
pncand.2  |-  ( ph  ->  B  e.  CC )
subaddd.3  |-  ( ph  ->  C  e.  CC )
subneintr2d.4  |-  ( ph  ->  A  =/=  B )
Assertion
Ref Expression
subneintr2d  |-  ( ph  ->  ( A  -  C
)  =/=  ( B  -  C ) )

Proof of Theorem subneintr2d
StepHypRef Expression
1 subneintr2d.4 . 2  |-  ( ph  ->  A  =/=  B )
2 negidd.1 . . . 4  |-  ( ph  ->  A  e.  CC )
3 pncand.2 . . . 4  |-  ( ph  ->  B  e.  CC )
4 subaddd.3 . . . 4  |-  ( ph  ->  C  e.  CC )
52, 3, 4subcan2ad 8111 . . 3  |-  ( ph  ->  ( ( A  -  C )  =  ( B  -  C )  <-> 
A  =  B ) )
65necon3bid 2347 . 2  |-  ( ph  ->  ( ( A  -  C )  =/=  ( B  -  C )  <->  A  =/=  B ) )
71, 6mpbird 166 1  |-  ( ph  ->  ( A  -  C
)  =/=  ( B  -  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1480    =/= wne 2306  (class class class)co 5767   CCcc 7611    - cmin 7926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-setind 4447  ax-resscn 7705  ax-1cn 7706  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-iota 5083  df-fun 5120  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-sub 7928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator