ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucon Unicode version

Theorem sucon 4304
Description: The class of all ordinal numbers is its own successor. (Contributed by NM, 12-Sep-2003.)
Assertion
Ref Expression
sucon  |-  suc  On  =  On

Proof of Theorem sucon
StepHypRef Expression
1 onprc 4303 . 2  |-  -.  On  e.  _V
2 sucprc 4175 . 2  |-  ( -.  On  e.  _V  ->  suc 
On  =  On )
31, 2ax-mp 7 1  |-  suc  On  =  On
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1285    e. wcel 1434   _Vcvv 2602   Oncon0 4126   suc csuc 4128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-setind 4288
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-sn 3412  df-uni 3610  df-tr 3884  df-iord 4129  df-on 4131  df-suc 4134
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator