ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sucprcreg Unicode version

Theorem sucprcreg 4459
Description: A class is equal to its successor iff it is a proper class (assuming the Axiom of Set Induction). (Contributed by NM, 9-Jul-2004.)
Assertion
Ref Expression
sucprcreg  |-  ( -.  A  e.  _V  <->  suc  A  =  A )

Proof of Theorem sucprcreg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sucprc 4329 . 2  |-  ( -.  A  e.  _V  ->  suc 
A  =  A )
2 elirr 4451 . . . 4  |-  -.  A  e.  A
3 nfv 1508 . . . . 5  |-  F/ x  A  e.  A
4 eleq1 2200 . . . . 5  |-  ( x  =  A  ->  (
x  e.  A  <->  A  e.  A ) )
53, 4ceqsalg 2709 . . . 4  |-  ( A  e.  _V  ->  ( A. x ( x  =  A  ->  x  e.  A )  <->  A  e.  A ) )
62, 5mtbiri 664 . . 3  |-  ( A  e.  _V  ->  -.  A. x ( x  =  A  ->  x  e.  A ) )
7 velsn 3539 . . . . 5  |-  ( x  e.  { A }  <->  x  =  A )
8 olc 700 . . . . . 6  |-  ( x  e.  { A }  ->  ( x  e.  A  \/  x  e.  { A } ) )
9 elun 3212 . . . . . . 7  |-  ( x  e.  ( A  u.  { A } )  <->  ( x  e.  A  \/  x  e.  { A } ) )
10 ssid 3112 . . . . . . . . 9  |-  A  C_  A
11 df-suc 4288 . . . . . . . . . . 11  |-  suc  A  =  ( A  u.  { A } )
1211eqeq1i 2145 . . . . . . . . . 10  |-  ( suc 
A  =  A  <->  ( A  u.  { A } )  =  A )
13 sseq1 3115 . . . . . . . . . 10  |-  ( ( A  u.  { A } )  =  A  ->  ( ( A  u.  { A }
)  C_  A  <->  A  C_  A
) )
1412, 13sylbi 120 . . . . . . . . 9  |-  ( suc 
A  =  A  -> 
( ( A  u.  { A } )  C_  A 
<->  A  C_  A )
)
1510, 14mpbiri 167 . . . . . . . 8  |-  ( suc 
A  =  A  -> 
( A  u.  { A } )  C_  A
)
1615sseld 3091 . . . . . . 7  |-  ( suc 
A  =  A  -> 
( x  e.  ( A  u.  { A } )  ->  x  e.  A ) )
179, 16syl5bir 152 . . . . . 6  |-  ( suc 
A  =  A  -> 
( ( x  e.  A  \/  x  e. 
{ A } )  ->  x  e.  A
) )
188, 17syl5 32 . . . . 5  |-  ( suc 
A  =  A  -> 
( x  e.  { A }  ->  x  e.  A ) )
197, 18syl5bir 152 . . . 4  |-  ( suc 
A  =  A  -> 
( x  =  A  ->  x  e.  A
) )
2019alrimiv 1846 . . 3  |-  ( suc 
A  =  A  ->  A. x ( x  =  A  ->  x  e.  A ) )
216, 20nsyl3 615 . 2  |-  ( suc 
A  =  A  ->  -.  A  e.  _V )
221, 21impbii 125 1  |-  ( -.  A  e.  _V  <->  suc  A  =  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104    \/ wo 697   A.wal 1329    = wceq 1331    e. wcel 1480   _Vcvv 2681    u. cun 3064    C_ wss 3066   {csn 3522   suc csuc 4282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-setind 4447
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-sn 3528  df-suc 4288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator