Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  suctr Unicode version

Theorem suctr 4184
 Description: The successor of a transitive class is transitive. (Contributed by Alan Sare, 11-Apr-2009.)
Assertion
Ref Expression
suctr

Proof of Theorem suctr
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . 5
2 vex 2605 . . . . . 6
32elsuc 4169 . . . . 5
41, 3sylib 120 . . . 4
5 simpl 107 . . . . . . 7
6 eleq2 2143 . . . . . . 7
75, 6syl5ibcom 153 . . . . . 6
8 elelsuc 4172 . . . . . 6
97, 8syl6 33 . . . . 5
10 trel 3890 . . . . . . . . 9
1110expd 254 . . . . . . . 8
1211adantrd 273 . . . . . . 7
1312, 8syl8 70 . . . . . 6
14 jao 705 . . . . . 6
1513, 14syl6 33 . . . . 5
169, 15mpdi 42 . . . 4
174, 16mpdi 42 . . 3
1817alrimivv 1797 . 2
19 dftr2 3885 . 2
2018, 19sylibr 132 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wo 662  wal 1283   wceq 1285   wcel 1434   wtr 3883   csuc 4128 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-sn 3412  df-uni 3610  df-tr 3884  df-suc 4134 This theorem is referenced by:  ordsucim  4252  ordom  4355
 Copyright terms: Public domain W3C validator