ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  supminfex Unicode version

Theorem supminfex 9385
Description: A supremum is the negation of the infimum of that set's image under negation. (Contributed by Jim Kingdon, 14-Jan-2022.)
Hypotheses
Ref Expression
supminfex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
supminfex.ss  |-  ( ph  ->  A  C_  RR )
Assertion
Ref Expression
supminfex  |-  ( ph  ->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
Distinct variable groups:    w, A, x, y, z    ph, x, y, z
Allowed substitution hint:    ph( w)

Proof of Theorem supminfex
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 supminfex.ex . . . . 5  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
2 supminfex.ss . . . . 5  |-  ( ph  ->  A  C_  RR )
31, 2supinfneg 9383 . . . 4  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  {
w  e.  RR  |  -u w  e.  A }  -.  y  <  x  /\  A. y  e.  RR  (
x  <  y  ->  E. z  e.  { w  e.  RR  |  -u w  e.  A } z  < 
y ) ) )
4 ssrab2 3177 . . . . 5  |-  { w  e.  RR  |  -u w  e.  A }  C_  RR
54a1i 9 . . . 4  |-  ( ph  ->  { w  e.  RR  |  -u w  e.  A }  C_  RR )
63, 5infrenegsupex 9382 . . 3  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  ) )
7 elrabi 2832 . . . . . . 7  |-  ( x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  ->  x  e.  RR )
87adantl 275 . . . . . 6  |-  ( (
ph  /\  x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } )  ->  x  e.  RR )
92sselda 3092 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  x  e.  RR )
10 negeq 7948 . . . . . . . . . 10  |-  ( z  =  x  ->  -u z  =  -u x )
1110eleq1d 2206 . . . . . . . . 9  |-  ( z  =  x  ->  ( -u z  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u x  e. 
{ w  e.  RR  |  -u w  e.  A } ) )
1211elrab3 2836 . . . . . . . 8  |-  ( x  e.  RR  ->  (
x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  -u x  e. 
{ w  e.  RR  |  -u w  e.  A } ) )
13 renegcl 8016 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u x  e.  RR )
14 negeq 7948 . . . . . . . . . . 11  |-  ( w  =  -u x  ->  -u w  =  -u -u x )
1514eleq1d 2206 . . . . . . . . . 10  |-  ( w  =  -u x  ->  ( -u w  e.  A  <->  -u -u x  e.  A ) )
1615elrab3 2836 . . . . . . . . 9  |-  ( -u x  e.  RR  ->  (
-u x  e.  {
w  e.  RR  |  -u w  e.  A }  <->  -u -u x  e.  A
) )
1713, 16syl 14 . . . . . . . 8  |-  ( x  e.  RR  ->  ( -u x  e.  { w  e.  RR  |  -u w  e.  A }  <->  -u -u x  e.  A ) )
18 recn 7746 . . . . . . . . . 10  |-  ( x  e.  RR  ->  x  e.  CC )
1918negnegd 8057 . . . . . . . . 9  |-  ( x  e.  RR  ->  -u -u x  =  x )
2019eleq1d 2206 . . . . . . . 8  |-  ( x  e.  RR  ->  ( -u -u x  e.  A  <->  x  e.  A ) )
2112, 17, 203bitrd 213 . . . . . . 7  |-  ( x  e.  RR  ->  (
x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  x  e.  A ) )
2221adantl 275 . . . . . 6  |-  ( (
ph  /\  x  e.  RR )  ->  ( x  e.  { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } }  <->  x  e.  A
) )
238, 9, 22eqrdav 2136 . . . . 5  |-  ( ph  ->  { z  e.  RR  |  -u z  e.  {
w  e.  RR  |  -u w  e.  A } }  =  A )
2423supeq1d 6867 . . . 4  |-  ( ph  ->  sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  )  =  sup ( A ,  RR ,  <  ) )
2524negeqd 7950 . . 3  |-  ( ph  -> 
-u sup ( { z  e.  RR  |  -u z  e.  { w  e.  RR  |  -u w  e.  A } } ,  RR ,  <  )  = 
-u sup ( A ,  RR ,  <  ) )
266, 25eqtrd 2170 . 2  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  ) )
27 lttri3 7837 . . . . . 6  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
2827adantl 275 . . . . 5  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
2928, 3infclti 6903 . . . 4  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  RR )
3029recnd 7787 . . 3  |-  ( ph  -> inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  CC )
3128, 1supclti 6878 . . . 4  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
3231recnd 7787 . . 3  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  CC )
33 negcon2 8008 . . 3  |-  ( (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  e.  CC  /\ 
sup ( A ,  RR ,  <  )  e.  CC )  ->  (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) ) )
3430, 32, 33syl2anc 408 . 2  |-  ( ph  ->  (inf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )  =  -u sup ( A ,  RR ,  <  )  <->  sup ( A ,  RR ,  <  )  =  -uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  )
) )
3526, 34mpbid 146 1  |-  ( ph  ->  sup ( A ,  RR ,  <  )  = 
-uinf ( { w  e.  RR  |  -u w  e.  A } ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2414   E.wrex 2415   {crab 2418    C_ wss 3066   class class class wbr 3924   supcsup 6862  infcinf 6863   CCcc 7611   RRcr 7612    < clt 7793   -ucneg 7927
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-isom 5127  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-sup 6864  df-inf 6865  df-pnf 7795  df-mnf 7796  df-ltxr 7798  df-sub 7928  df-neg 7929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator