ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suppssfv Unicode version

Theorem suppssfv 5736
Description: Formula building theorem for support restriction, on a function which preserves zero. (Contributed by Stefan O'Rear, 9-Mar-2015.)
Hypotheses
Ref Expression
suppssfv.a  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
suppssfv.f  |-  ( ph  ->  ( F `  Y
)  =  Z )
suppssfv.v  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
Assertion
Ref Expression
suppssfv  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `
 A ) )
" ( _V  \  { Z } ) ) 
C_  L )
Distinct variable groups:    ph, x    x, Y    x, Z
Allowed substitution hints:    A( x)    D( x)    F( x)    L( x)    V( x)

Proof of Theorem suppssfv
StepHypRef Expression
1 eldifsni 3524 . . . . 5  |-  ( ( F `  A )  e.  ( _V  \  { Z } )  -> 
( F `  A
)  =/=  Z )
2 suppssfv.v . . . . . . . . 9  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  V )
3 elex 2583 . . . . . . . . 9  |-  ( A  e.  V  ->  A  e.  _V )
42, 3syl 14 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  A  e.  _V )
54adantr 265 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  ( F `  A )  =/=  Z )  ->  A  e.  _V )
6 suppssfv.f . . . . . . . . . . 11  |-  ( ph  ->  ( F `  Y
)  =  Z )
7 fveq2 5206 . . . . . . . . . . . 12  |-  ( A  =  Y  ->  ( F `  A )  =  ( F `  Y ) )
87eqeq1d 2064 . . . . . . . . . . 11  |-  ( A  =  Y  ->  (
( F `  A
)  =  Z  <->  ( F `  Y )  =  Z ) )
96, 8syl5ibrcom 150 . . . . . . . . . 10  |-  ( ph  ->  ( A  =  Y  ->  ( F `  A )  =  Z ) )
109necon3d 2264 . . . . . . . . 9  |-  ( ph  ->  ( ( F `  A )  =/=  Z  ->  A  =/=  Y ) )
1110adantr 265 . . . . . . . 8  |-  ( (
ph  /\  x  e.  D )  ->  (
( F `  A
)  =/=  Z  ->  A  =/=  Y ) )
1211imp 119 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  D )  /\  ( F `  A )  =/=  Z )  ->  A  =/=  Y )
13 eldifsn 3523 . . . . . . 7  |-  ( A  e.  ( _V  \  { Y } )  <->  ( A  e.  _V  /\  A  =/= 
Y ) )
145, 12, 13sylanbrc 402 . . . . . 6  |-  ( ( ( ph  /\  x  e.  D )  /\  ( F `  A )  =/=  Z )  ->  A  e.  ( _V  \  { Y } ) )
1514ex 112 . . . . 5  |-  ( (
ph  /\  x  e.  D )  ->  (
( F `  A
)  =/=  Z  ->  A  e.  ( _V  \  { Y } ) ) )
161, 15syl5 32 . . . 4  |-  ( (
ph  /\  x  e.  D )  ->  (
( F `  A
)  e.  ( _V 
\  { Z }
)  ->  A  e.  ( _V  \  { Y } ) ) )
1716ss2rabdv 3049 . . 3  |-  ( ph  ->  { x  e.  D  |  ( F `  A )  e.  ( _V  \  { Z } ) }  C_  { x  e.  D  |  A  e.  ( _V  \  { Y } ) } )
18 eqid 2056 . . . 4  |-  ( x  e.  D  |->  ( F `
 A ) )  =  ( x  e.  D  |->  ( F `  A ) )
1918mptpreima 4842 . . 3  |-  ( `' ( x  e.  D  |->  ( F `  A
) ) " ( _V  \  { Z }
) )  =  {
x  e.  D  | 
( F `  A
)  e.  ( _V 
\  { Z }
) }
20 eqid 2056 . . . 4  |-  ( x  e.  D  |->  A )  =  ( x  e.  D  |->  A )
2120mptpreima 4842 . . 3  |-  ( `' ( x  e.  D  |->  A ) " ( _V  \  { Y }
) )  =  {
x  e.  D  |  A  e.  ( _V  \  { Y } ) }
2217, 19, 213sstr4g 3014 . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `
 A ) )
" ( _V  \  { Z } ) ) 
C_  ( `' ( x  e.  D  |->  A ) " ( _V 
\  { Y }
) ) )
23 suppssfv.a . 2  |-  ( ph  ->  ( `' ( x  e.  D  |->  A )
" ( _V  \  { Y } ) ) 
C_  L )
2422, 23sstrd 2983 1  |-  ( ph  ->  ( `' ( x  e.  D  |->  ( F `
 A ) )
" ( _V  \  { Z } ) ) 
C_  L )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259    e. wcel 1409    =/= wne 2220   {crab 2327   _Vcvv 2574    \ cdif 2942    C_ wss 2945   {csn 3403    |-> cmpt 3846   `'ccnv 4372   "cima 4376   ` cfv 4930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-xp 4379  df-rel 4380  df-cnv 4381  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fv 4938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator