ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprubex Unicode version

Theorem suprubex 8702
Description: A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
Hypotheses
Ref Expression
suprubex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
suprubex.ss  |-  ( ph  ->  A  C_  RR )
suprubex.b  |-  ( ph  ->  B  e.  A )
Assertion
Ref Expression
suprubex  |-  ( ph  ->  B  <_  sup ( A ,  RR ,  <  ) )
Distinct variable groups:    x, A, y, z    ph, x
Allowed substitution hints:    ph( y, z)    B( x, y, z)

Proof of Theorem suprubex
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprubex.ss . . 3  |-  ( ph  ->  A  C_  RR )
2 suprubex.b . . 3  |-  ( ph  ->  B  e.  A )
31, 2sseldd 3093 . 2  |-  ( ph  ->  B  e.  RR )
4 lttri3 7837 . . . 4  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
54adantl 275 . . 3  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
6 suprubex.ex . . 3  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
75, 6supclti 6878 . 2  |-  ( ph  ->  sup ( A ,  RR ,  <  )  e.  RR )
85, 6supubti 6879 . . 3  |-  ( ph  ->  ( B  e.  A  ->  -.  sup ( A ,  RR ,  <  )  <  B ) )
92, 8mpd 13 . 2  |-  ( ph  ->  -.  sup ( A ,  RR ,  <  )  <  B )
103, 7, 9nltled 7876 1  |-  ( ph  ->  B  <_  sup ( A ,  RR ,  <  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1480   A.wral 2414   E.wrex 2415    C_ wss 3066   class class class wbr 3924   supcsup 6862   RRcr 7612    < clt 7793    <_ cle 7794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-pre-ltirr 7725  ax-pre-apti 7728
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-xp 4540  df-cnv 4542  df-iota 5083  df-riota 5723  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799
This theorem is referenced by:  suprzclex  9142
  Copyright terms: Public domain W3C validator