ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl3an3 Unicode version

Theorem syl3an3 1205
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.)
Hypotheses
Ref Expression
syl3an3.1  |-  ( ph  ->  th )
syl3an3.2  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
Assertion
Ref Expression
syl3an3  |-  ( ( ps  /\  ch  /\  ph )  ->  ta )

Proof of Theorem syl3an3
StepHypRef Expression
1 syl3an3.1 . . 3  |-  ( ph  ->  th )
2 syl3an3.2 . . . 4  |-  ( ( ps  /\  ch  /\  th )  ->  ta )
323exp 1138 . . 3  |-  ( ps 
->  ( ch  ->  ( th  ->  ta ) ) )
41, 3syl7 68 . 2  |-  ( ps 
->  ( ch  ->  ( ph  ->  ta ) ) )
543imp 1133 1  |-  ( ( ps  /\  ch  /\  ph )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 920
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115  df-3an 922
This theorem is referenced by:  syl3an3b  1208  syl3an3br  1211  vtoclgft  2650  ovmpt2x  5660  ovmpt2ga  5661  nnanq0  6710  apreim  7770  divassap  7845  ltmul2  8001  elfzo  9236  subcn2  10288  mulcn2  10289  ndvdsp1  10476  gcddiv  10552  lcmneg  10600
  Copyright terms: Public domain W3C validator