![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5bir | Unicode version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5bir.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5bir.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5bir |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5bir.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpri 131 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl5bir.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5 32 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: 3imtr3g 202 19.37-1 1605 mo3h 1995 necon1bidc 2298 necon4aidc 2314 ceqex 2723 ssdisj 3307 ralidm 3349 rexxfrd 4221 sucprcreg 4300 imain 5012 funopfv 5245 mpteqb 5293 funfvima 5422 fliftfun 5467 iinerm 6244 eroveu 6263 th3qlem1 6274 elni2 6566 genpdisj 6775 lttri3 7258 cau3lem 10138 maxleast 10237 rexanre 10244 climcau 10322 divgcdcoprmex 10628 prmind2 10646 |
Copyright terms: Public domain | W3C validator |