![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eqbr | Unicode version |
Description: B chained equality inference for a binary relation. (Contributed by NM, 11-Oct-1999.) |
Ref | Expression |
---|---|
syl5eqbr.1 |
![]() ![]() ![]() ![]() |
syl5eqbr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5eqbr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqbr.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl5eqbr.1 |
. 2
![]() ![]() ![]() ![]() | |
3 | eqid 2083 |
. 2
![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3brtr4g 3837 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-v 2612 df-un 2986 df-sn 3422 df-pr 3423 df-op 3425 df-br 3806 |
This theorem is referenced by: xp1en 6389 caucvgprlemm 6990 intqfrac2 9471 m1modge3gt1 9523 bernneq2 9761 nno 10531 oddprmge3 10741 sqnprm 10742 oddennn 10830 |
Copyright terms: Public domain | W3C validator |