![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5eqr | Unicode version |
Description: An equality transitivity deduction. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5eqr.1 |
![]() ![]() ![]() ![]() |
syl5eqr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5eqr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5eqr.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | eqcomi 2086 |
. 2
![]() ![]() ![]() ![]() |
3 | syl5eqr.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5eq 2126 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-4 1441 ax-17 1460 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 |
This theorem is referenced by: 3eqtr3g 2137 csbeq1a 2917 ssdifeq0 3332 pofun 4075 opabbi2dv 4513 funimaexg 5014 fresin 5099 f1imacnv 5174 foimacnv 5175 fsn2 5369 fmptpr 5387 funiunfvdm 5434 funiunfvdmf 5435 fcof1o 5460 f1opw2 5737 fnexALT 5771 eqerlem 6203 fopwdom 6380 mul02 7558 recdivap 7873 fzpreddisj 9164 fzshftral 9201 qbtwnrelemcalc 9342 frec2uzrdg 9491 frecuzrdgrcl 9492 frecuzrdgsuc 9496 frecuzrdgrclt 9497 frecuzrdgg 9498 binom3 9687 bcn2 9788 sizefz1 9807 sizeunlem 9828 cnrecnv 9935 resqrexlemnm 10042 amgm2 10142 dfgcd3 10543 eucalgval 10580 sqrt2irrlem 10684 |
Copyright terms: Public domain | W3C validator |