![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5ibr | Unicode version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) (Revised by NM, 22-Sep-2013.) |
Ref | Expression |
---|---|
syl5ibr.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5ibr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5ibr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl5ibr.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | bicomd 139 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl5ib 152 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: syl5ibrcom 155 biimprd 156 nbn2 646 limelon 4162 eldifpw 4234 ssonuni 4240 onsucuni2 4315 peano2 4344 limom 4362 elrnmpt1 4613 cnveqb 4806 cnveq0 4807 relcoi1 4879 ndmfvg 5236 ffvresb 5360 caovord3d 5702 poxp 5884 nnm0r 6123 nnacl 6124 nnacom 6128 nnaass 6129 nndi 6130 nnmass 6131 nnmsucr 6132 nnmcom 6133 brecop 6262 ecopovtrn 6269 ecopovtrng 6272 fundmen 6353 phpm 6400 f1vrnfibi 6453 mulcmpblnq 6620 ordpipqqs 6626 mulcmpblnq0 6696 genpprecll 6766 genppreclu 6767 addcmpblnr 6978 ax1rid 7105 axpre-mulgt0 7115 cnegexlem1 7350 msqge0 7783 mulge0 7786 ltleap 7797 nnmulcl 8127 nnsub 8144 elnn0z 8445 ztri3or0 8474 nneoor 8530 uz11 8722 xltnegi 8978 frec2uzuzd 9484 iseqss 9541 iseqsst 9542 iseqfveq2 9544 iseqshft2 9548 iseqsplit 9554 iseqcaopr3 9556 iseqid2 9564 iseqhomo 9565 m1expcl2 9595 expadd 9615 expmul 9618 faclbnd 9765 caucvgrelemcau 10004 recan 10133 rexanre 10244 dvdstr 10377 alzdvds 10399 zob 10435 gcdmultiplez 10554 dvdssq 10564 cncongr2 10630 bj-om 10890 bj-inf2vnlem2 10924 bj-inf2vn 10927 bj-inf2vn2 10928 |
Copyright terms: Public domain | W3C validator |