![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5rbb | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
syl5rbb.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5rbb.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5rbb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbb.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl5rbb.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl5bb 190 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | bicomd 139 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: syl5rbbr 193 pm5.17dc 844 dn1dc 902 csbabg 2972 uniiunlem 3091 inimasn 4791 cnvpom 4910 fnresdisj 5060 f1oiso 5516 reldm 5863 1idprl 6894 1idpru 6895 nndiv 8198 fzn 9189 fz1sbc 9241 bj-indeq 10991 |
Copyright terms: Public domain | W3C validator |