![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl5rbbr | Unicode version |
Description: A syllogism inference from two biconditionals. (Contributed by NM, 25-Nov-1994.) |
Ref | Expression |
---|---|
syl5rbbr.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl5rbbr.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl5rbbr |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5rbbr.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bicomi 130 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl5rbbr.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl5rbb 191 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: xordc 1324 sbal2 1940 eqsnm 3555 fnressn 5381 fressnfv 5382 eluniimadm 5436 genpassl 6776 genpassu 6777 1idprl 6842 1idpru 6843 axcaucvglemres 7127 negeq0 7429 muleqadd 7825 crap0 8102 addltmul 8334 fzrev 9177 modq0 9411 cjap0 9932 cjne0 9933 caucvgrelemrec 10003 lenegsq 10119 dvdsabseq 10392 oddennn 10730 elabgf0 10765 |
Copyright terms: Public domain | W3C validator |