ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5req Unicode version

Theorem syl5req 2127
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
syl5req.1  |-  A  =  B
syl5req.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
syl5req  |-  ( ph  ->  C  =  A )

Proof of Theorem syl5req
StepHypRef Expression
1 syl5req.1 . . 3  |-  A  =  B
2 syl5req.2 . . 3  |-  ( ph  ->  B  =  C )
31, 2syl5eq 2126 . 2  |-  ( ph  ->  A  =  C )
43eqcomd 2087 1  |-  ( ph  ->  C  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-4 1441  ax-17 1460  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-cleq 2075
This theorem is referenced by:  syl5reqr  2129  opeqsn  4015  relop  4514  funopg  4964  funcnvres  5003  apreap  7754  recextlem1  7808  nn0supp  8407  intqfrac2  9401  sizeprg  9832
  Copyright terms: Public domain W3C validator