ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl5reqr Unicode version

Theorem syl5reqr 2129
Description: An equality transitivity deduction. (Contributed by NM, 29-Mar-1998.)
Hypotheses
Ref Expression
syl5reqr.1  |-  B  =  A
syl5reqr.2  |-  ( ph  ->  B  =  C )
Assertion
Ref Expression
syl5reqr  |-  ( ph  ->  C  =  A )

Proof of Theorem syl5reqr
StepHypRef Expression
1 syl5reqr.1 . . 3  |-  B  =  A
21eqcomi 2086 . 2  |-  A  =  B
3 syl5reqr.2 . 2  |-  ( ph  ->  B  =  C )
42, 3syl5req 2127 1  |-  ( ph  ->  C  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-4 1441  ax-17 1460  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-cleq 2075
This theorem is referenced by:  bm2.5ii  4242  resdmdfsn  4675  f1o00  5186  fmpt  5345  fmptsn  5378  resfunexg  5408  pm54.43  6508  prarloclem5  6741  recexprlem1ssl  6874  recexprlem1ssu  6875  iooval2  9003  sizesng  9811  resqrexlemover  10023
  Copyright terms: Public domain W3C validator