![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6eleq | Unicode version |
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.) |
Ref | Expression |
---|---|
syl6eleq.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6eleq.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6eleq |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6eleq.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6eleq.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | eleqtrd 2158 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-4 1441 ax-17 1460 ax-ial 1468 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-cleq 2075 df-clel 2078 |
This theorem is referenced by: syl6eleqr 2173 prid2g 3505 freccllem 6051 caucvgprprlem2 6962 gt0srpr 6987 eluzel2 8705 fseq1p1m1 9187 fznn0sub2 9216 nn0split 9224 exple1 9629 ibcval5 9787 bcpasc 9790 clim2iser 10313 clim2iser2 10314 iiserex 10315 iisermulc2 10316 iserile 10318 iserige0 10319 climub 10320 climserile 10321 serif0 10327 mod2eq1n2dvds 10423 ialgrp1 10572 |
Copyright terms: Public domain | W3C validator |