Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6eqbrr Unicode version

Theorem syl6eqbrr 3831
 Description: A chained equality inference for a binary relation. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl6eqbrr.1
syl6eqbrr.2
Assertion
Ref Expression
syl6eqbrr

Proof of Theorem syl6eqbrr
StepHypRef Expression
1 syl6eqbrr.1 . . 3
21eqcomd 2087 . 2
3 syl6eqbrr.2 . 2
42, 3syl6eqbr 3830 1
 Colors of variables: wff set class Syntax hints:   wi 4   wceq 1285   class class class wbr 3793 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator