ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6eqelr Unicode version

Theorem syl6eqelr 2171
Description: A membership and equality inference. (Contributed by NM, 4-Jan-2006.)
Hypotheses
Ref Expression
syl6eqelr.1  |-  ( ph  ->  B  =  A )
syl6eqelr.2  |-  B  e.  C
Assertion
Ref Expression
syl6eqelr  |-  ( ph  ->  A  e.  C )

Proof of Theorem syl6eqelr
StepHypRef Expression
1 syl6eqelr.1 . . 3  |-  ( ph  ->  B  =  A )
21eqcomd 2087 . 2  |-  ( ph  ->  A  =  B )
3 syl6eqelr.2 . 2  |-  B  e.  C
42, 3syl6eqel 2170 1  |-  ( ph  ->  A  e.  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    e. wcel 1434
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-4 1441  ax-17 1460  ax-ial 1468  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-cleq 2075  df-clel 2078
This theorem is referenced by:  eusvnfb  4206  releldm2  5836  bren  6287  brdomg  6288  ioof  9059
  Copyright terms: Public domain W3C validator