![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > syl6ss | Unicode version |
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
syl6ss.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6ss.2 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6ss |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ss.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6ss.2 |
. . 3
![]() ![]() ![]() ![]() | |
3 | 2 | a1i 9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sstrd 3010 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-in 2980 df-ss 2987 |
This theorem is referenced by: difss2 3101 sstpr 3557 rintm 3773 eqbrrdva 4533 ssxpbm 4786 ssxp1 4787 ssxp2 4788 relfld 4876 funssxp 5091 dff2 5343 fliftf 5470 1stcof 5821 2ndcof 5822 tfrlemibfn 5977 tfr1onlembfn 5993 tfrcllemssrecs 6001 tfrcllembfn 6006 sucinc2 6090 peano5nnnn 7120 peano5nni 8109 suprzclex 8526 ioodisj 9091 fzossnn0 9261 elfzom1elp1fzo 9288 frecuzrdgtcl 9494 frecuzrdgdomlem 9499 frecuzrdgfunlem 9501 peano5set 10893 |
Copyright terms: Public domain | W3C validator |