ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  syl6sseqr Unicode version

Theorem syl6sseqr 3047
Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004.)
Hypotheses
Ref Expression
syl6ssr.1  |-  ( ph  ->  A  C_  B )
syl6ssr.2  |-  C  =  B
Assertion
Ref Expression
syl6sseqr  |-  ( ph  ->  A  C_  C )

Proof of Theorem syl6sseqr
StepHypRef Expression
1 syl6ssr.1 . 2  |-  ( ph  ->  A  C_  B )
2 syl6ssr.2 . . 3  |-  C  =  B
32eqcomi 2086 . 2  |-  B  =  C
41, 3syl6sseq 3046 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    C_ wss 2974
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-in 2980  df-ss 2987
This theorem is referenced by:  iunpw  4231  iotanul  4906  iotass  4908  tfrlem9  5962  tfrlemibfn  5971  tfrlemiubacc  5973  tfrlemi14d  5976  tfr1onlemssrecs  5982  tfr1onlemres  5992  tfrcllemres  6005  uznnssnn  8735  shftfvalg  9833  shftfval  9836
  Copyright terms: Public domain W3C validator