![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylan9bb | Unicode version |
Description: Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 4-Mar-1995.) |
Ref | Expression |
---|---|
sylan9bb.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
sylan9bb.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylan9bb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylan9bb.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 270 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylan9bb.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | adantl 271 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitrd 186 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: sylan9bbr 451 bi2anan9 571 baibd 866 rbaibd 867 syl3an9b 1242 sbcomxyyz 1888 eqeq12 2094 eleq12 2144 sbhypf 2649 ceqsrex2v 2728 sseq12 3023 rexprg 3452 rextpg 3454 breq12 3798 opelopabg 4031 brabg 4032 opelopab2 4033 ralxpf 4510 rexxpf 4511 feq23 5064 f00 5112 fconstg 5114 f1oeq23 5151 f1o00 5192 f1oiso 5496 riota1a 5518 cbvmpt2x 5613 caovord 5703 caovord3 5705 genpelvl 6764 genpelvu 6765 nn0ind-raph 8545 elfz 9111 elfzp12 9192 shftfibg 9846 shftfib 9849 absdvdsb 10358 dvdsabsb 10359 dvdsabseq 10392 |
Copyright terms: Public domain | W3C validator |