![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sylanb | Unicode version |
Description: A syllogism inference. (Contributed by NM, 18-May-1994.) |
Ref | Expression |
---|---|
sylanb.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
sylanb.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
sylanb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sylanb.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 118 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | sylanb.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | sylan 277 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: syl2anb 285 anabsan 540 2exeu 2034 eqtr2 2100 pm13.181 2328 rmob 2907 disjne 3304 seex 4098 tron 4145 fssres 5097 funbrfvb 5248 funopfvb 5249 fvelrnb 5253 fvco 5275 fvimacnvi 5313 ffvresb 5360 fvtp2g 5402 fvtp2 5405 fnex 5415 funex 5416 1st2nd 5838 dftpos4 5912 nnmsucr 6132 nnmcan 6158 fundmfibi 6448 nzadd 8484 peano5uzti 8536 fnn0ind 8544 uztrn2 8717 irradd 8812 xltnegi 8978 elioore 9011 uzsubsubfz1 9143 fzo1fzo0n0 9269 elfzonelfzo 9316 qbtwnxr 9344 faclbnd 9765 faclbnd3 9767 dvdsprime 10648 bj-indind 10885 |
Copyright terms: Public domain | W3C validator |