ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sylbb2 Unicode version

Theorem sylbb2 136
Description: A mixed syllogism inference from two biconditionals. (Contributed by BJ, 21-Apr-2019.)
Hypotheses
Ref Expression
sylbb2.1  |-  ( ph  <->  ps )
sylbb2.2  |-  ( ch  <->  ps )
Assertion
Ref Expression
sylbb2  |-  ( ph  ->  ch )

Proof of Theorem sylbb2
StepHypRef Expression
1 sylbb2.1 . 2  |-  ( ph  <->  ps )
2 sylbb2.2 . . 3  |-  ( ch  <->  ps )
32biimpri 131 . 2  |-  ( ps 
->  ch )
41, 3sylbi 119 1  |-  ( ph  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  inffiexmid  6458  ssfirab  6476
  Copyright terms: Public domain W3C validator