ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfr1onlembxssdm Unicode version

Theorem tfr1onlembxssdm 6012
Description: Lemma for tfr1on 6019. The union of  B is defined on all elements of  X. (Contributed by Jim Kingdon, 14-Mar-2022.)
Hypotheses
Ref Expression
tfr1on.f  |-  F  = recs ( G )
tfr1on.g  |-  ( ph  ->  Fun  G )
tfr1on.x  |-  ( ph  ->  Ord  X )
tfr1on.ex  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
tfr1onlemsucfn.1  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
tfr1onlembacc.3  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
tfr1onlembacc.u  |-  ( (
ph  /\  x  e.  U. X )  ->  suc  x  e.  X )
tfr1onlembacc.4  |-  ( ph  ->  D  e.  X )
tfr1onlembacc.5  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfr1onlembxssdm  |-  ( ph  ->  D  C_  dom  U. B
)
Distinct variable groups:    A, f, g, h, x, z    D, f, g, x    f, G, x, y    f, X, x    ph, f, g, h, x, z    y, g, z    B, g, h, z   
w, B, g, z    D, h, z    h, G, z    w, G, f, x, y    g, X, z
Allowed substitution hints:    ph( y, w)    A( y, w)    B( x, y, f)    D( y, w)    F( x, y, z, w, f, g, h)    G( g)    X( y, w, h)

Proof of Theorem tfr1onlembxssdm
StepHypRef Expression
1 tfr1onlembacc.5 . . 3  |-  ( ph  ->  A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
2 simp1 939 . . . . . . . 8  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  ph )
3 simp2 940 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  z  e.  D )
4 tfr1onlembacc.4 . . . . . . . . . 10  |-  ( ph  ->  D  e.  X )
52, 4syl 14 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  D  e.  X )
6 tfr1on.x . . . . . . . . . . 11  |-  ( ph  ->  Ord  X )
7 ordtr1 4171 . . . . . . . . . . 11  |-  ( Ord 
X  ->  ( (
z  e.  D  /\  D  e.  X )  ->  z  e.  X ) )
86, 7syl 14 . . . . . . . . . 10  |-  ( ph  ->  ( ( z  e.  D  /\  D  e.  X )  ->  z  e.  X ) )
98imp 122 . . . . . . . . 9  |-  ( (
ph  /\  ( z  e.  D  /\  D  e.  X ) )  -> 
z  e.  X )
102, 3, 5, 9syl12anc 1168 . . . . . . . 8  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  z  e.  X )
11 simp3l 967 . . . . . . . 8  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  g  Fn  z )
12 fneq2 5039 . . . . . . . . . . . . 13  |-  ( x  =  z  ->  (
f  Fn  x  <->  f  Fn  z ) )
1312imbi1d 229 . . . . . . . . . . . 12  |-  ( x  =  z  ->  (
( f  Fn  x  ->  ( G `  f
)  e.  _V )  <->  ( f  Fn  z  -> 
( G `  f
)  e.  _V )
) )
1413albidv 1747 . . . . . . . . . . 11  |-  ( x  =  z  ->  ( A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) 
<-> 
A. f ( f  Fn  z  ->  ( G `  f )  e.  _V ) ) )
15 tfr1on.ex . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X  /\  f  Fn  x
)  ->  ( G `  f )  e.  _V )
16153expia 1141 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  (
f  Fn  x  -> 
( G `  f
)  e.  _V )
)
1716alrimiv 1797 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  X )  ->  A. f
( f  Fn  x  ->  ( G `  f
)  e.  _V )
)
1817ralrimiva 2439 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  X  A. f ( f  Fn  x  ->  ( G `  f )  e.  _V ) )
1918adantr 270 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  X )  ->  A. x  e.  X  A. f
( f  Fn  x  ->  ( G `  f
)  e.  _V )
)
20 simpr 108 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  X )  ->  z  e.  X )
2114, 19, 20rspcdva 2715 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  X )  ->  A. f
( f  Fn  z  ->  ( G `  f
)  e.  _V )
)
22 fneq1 5038 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
f  Fn  z  <->  g  Fn  z ) )
23 fveq2 5229 . . . . . . . . . . . . 13  |-  ( f  =  g  ->  ( G `  f )  =  ( G `  g ) )
2423eleq1d 2151 . . . . . . . . . . . 12  |-  ( f  =  g  ->  (
( G `  f
)  e.  _V  <->  ( G `  g )  e.  _V ) )
2522, 24imbi12d 232 . . . . . . . . . . 11  |-  ( f  =  g  ->  (
( f  Fn  z  ->  ( G `  f
)  e.  _V )  <->  ( g  Fn  z  -> 
( G `  g
)  e.  _V )
) )
2625spv 1783 . . . . . . . . . 10  |-  ( A. f ( f  Fn  z  ->  ( G `  f )  e.  _V )  ->  ( g  Fn  z  ->  ( G `  g )  e.  _V ) )
2721, 26syl 14 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  X )  ->  (
g  Fn  z  -> 
( G `  g
)  e.  _V )
)
2827imp 122 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  X )  /\  g  Fn  z )  ->  ( G `  g )  e.  _V )
292, 10, 11, 28syl21anc 1169 . . . . . . 7  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  ( G `  g )  e.  _V )
30 vex 2613 . . . . . . . . . 10  |-  z  e. 
_V
31 opexg 4011 . . . . . . . . . 10  |-  ( ( z  e.  _V  /\  ( G `  g )  e.  _V )  ->  <. z ,  ( G `
 g ) >.  e.  _V )
3230, 29, 31sylancr 405 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  <. z ,  ( G `  g
) >.  e.  _V )
33 snidg 3441 . . . . . . . . 9  |-  ( <.
z ,  ( G `
 g ) >.  e.  _V  ->  <. z ,  ( G `  g
) >.  e.  { <. z ,  ( G `  g ) >. } )
34 elun2 3150 . . . . . . . . 9  |-  ( <.
z ,  ( G `
 g ) >.  e.  { <. z ,  ( G `  g )
>. }  ->  <. z ,  ( G `  g
) >.  e.  ( g  u.  { <. z ,  ( G `  g ) >. } ) )
3532, 33, 343syl 17 . . . . . . . 8  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  <. z ,  ( G `  g
) >.  e.  ( g  u.  { <. z ,  ( G `  g ) >. } ) )
36 simp3r 968 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) )
37 rspe 2417 . . . . . . . . . . . 12  |-  ( ( z  e.  X  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w
)  =  ( G `
 ( g  |`  w ) ) ) )  ->  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
3810, 11, 36, 37syl12anc 1168 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
39 vex 2613 . . . . . . . . . . . 12  |-  g  e. 
_V
40 tfr1onlemsucfn.1 . . . . . . . . . . . . 13  |-  A  =  { f  |  E. x  e.  X  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( G `  ( f  |`  y
) ) ) }
4140tfr1onlem3ag 6006 . . . . . . . . . . . 12  |-  ( g  e.  _V  ->  (
g  e.  A  <->  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) ) )
4239, 41ax-mp 7 . . . . . . . . . . 11  |-  ( g  e.  A  <->  E. z  e.  X  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )
4338, 42sylibr 132 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  g  e.  A )
443, 11, 433jca 1119 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  ( z  e.  D  /\  g  Fn  z  /\  g  e.  A ) )
45 snexg 3976 . . . . . . . . . . 11  |-  ( <.
z ,  ( G `
 g ) >.  e.  _V  ->  { <. z ,  ( G `  g ) >. }  e.  _V )
46 unexg 4224 . . . . . . . . . . . 12  |-  ( ( g  e.  _V  /\  {
<. z ,  ( G `
 g ) >. }  e.  _V )  ->  ( g  u.  { <. z ,  ( G `
 g ) >. } )  e.  _V )
4739, 46mpan 415 . . . . . . . . . . 11  |-  ( {
<. z ,  ( G `
 g ) >. }  e.  _V  ->  ( g  u.  { <. z ,  ( G `  g ) >. } )  e.  _V )
4832, 45, 473syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  ( g  u.  { <. z ,  ( G `  g )
>. } )  e.  _V )
49 isset 2614 . . . . . . . . . 10  |-  ( ( g  u.  { <. z ,  ( G `  g ) >. } )  e.  _V  <->  E. h  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) )
5048, 49sylib 120 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  E. h  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) )
51 simpr3 947 . . . . . . . . . . . . 13  |-  ( ( z  e.  D  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } ) )
52 19.8a 1523 . . . . . . . . . . . . . 14  |-  ( ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `  g )
>. } ) )  ->  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) )
53 rspe 2417 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  D  /\  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) )  ->  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) )
54 tfr1onlembacc.3 . . . . . . . . . . . . . . . 16  |-  B  =  { h  |  E. z  e.  D  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) }
5554abeq2i 2193 . . . . . . . . . . . . . . 15  |-  ( h  e.  B  <->  E. z  e.  D  E. g
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )
5653, 55sylibr 132 . . . . . . . . . . . . . 14  |-  ( ( z  e.  D  /\  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( G `
 g ) >. } ) ) )  ->  h  e.  B
)
5752, 56sylan2 280 . . . . . . . . . . . . 13  |-  ( ( z  e.  D  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  h  e.  B )
5851, 57eqeltrrd 2160 . . . . . . . . . . . 12  |-  ( ( z  e.  D  /\  ( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( G `  g ) >. } ) ) )  ->  (
g  u.  { <. z ,  ( G `  g ) >. } )  e.  B )
59583exp2 1157 . . . . . . . . . . 11  |-  ( z  e.  D  ->  (
g  Fn  z  -> 
( g  e.  A  ->  ( h  =  ( g  u.  { <. z ,  ( G `  g ) >. } )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  B
) ) ) )
60593imp 1133 . . . . . . . . . 10  |-  ( ( z  e.  D  /\  g  Fn  z  /\  g  e.  A )  ->  ( h  =  ( g  u.  { <. z ,  ( G `  g ) >. } )  ->  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  e.  B
) )
6160exlimdv 1742 . . . . . . . . 9  |-  ( ( z  e.  D  /\  g  Fn  z  /\  g  e.  A )  ->  ( E. h  h  =  ( g  u. 
{ <. z ,  ( G `  g )
>. } )  ->  (
g  u.  { <. z ,  ( G `  g ) >. } )  e.  B ) )
6244, 50, 61sylc 61 . . . . . . . 8  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  ( g  u.  { <. z ,  ( G `  g )
>. } )  e.  B
)
63 elunii 3626 . . . . . . . 8  |-  ( (
<. z ,  ( G `
 g ) >.  e.  ( g  u.  { <. z ,  ( G `
 g ) >. } )  /\  (
g  u.  { <. z ,  ( G `  g ) >. } )  e.  B )  ->  <. z ,  ( G `
 g ) >.  e.  U. B )
6435, 62, 63syl2anc 403 . . . . . . 7  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  <. z ,  ( G `  g
) >.  e.  U. B
)
65 opeq2 3591 . . . . . . . . . 10  |-  ( w  =  ( G `  g )  ->  <. z ,  w >.  =  <. z ,  ( G `  g ) >. )
6665eleq1d 2151 . . . . . . . . 9  |-  ( w  =  ( G `  g )  ->  ( <. z ,  w >.  e. 
U. B  <->  <. z ,  ( G `  g
) >.  e.  U. B
) )
6766spcegv 2695 . . . . . . . 8  |-  ( ( G `  g )  e.  _V  ->  ( <. z ,  ( G `
 g ) >.  e.  U. B  ->  E. w <. z ,  w >.  e. 
U. B ) )
6830eldm2 4581 . . . . . . . 8  |-  ( z  e.  dom  U. B  <->  E. w <. z ,  w >.  e.  U. B )
6967, 68syl6ibr 160 . . . . . . 7  |-  ( ( G `  g )  e.  _V  ->  ( <. z ,  ( G `
 g ) >.  e.  U. B  ->  z  e.  dom  U. B ) )
7029, 64, 69sylc 61 . . . . . 6  |-  ( (
ph  /\  z  e.  D  /\  ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) ) )  ->  z  e.  dom  U. B )
71703expia 1141 . . . . 5  |-  ( (
ph  /\  z  e.  D )  ->  (
( g  Fn  z  /\  A. w  e.  z  ( g `  w
)  =  ( G `
 ( g  |`  w ) ) )  ->  z  e.  dom  U. B ) )
7271exlimdv 1742 . . . 4  |-  ( (
ph  /\  z  e.  D )  ->  ( E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w ) ) )  ->  z  e.  dom  U. B ) )
7372ralimdva 2434 . . 3  |-  ( ph  ->  ( A. z  e.  D  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( G `  ( g  |`  w
) ) )  ->  A. z  e.  D  z  e.  dom  U. B
) )
741, 73mpd 13 . 2  |-  ( ph  ->  A. z  e.  D  z  e.  dom  U. B
)
75 dfss3 2998 . 2  |-  ( D 
C_  dom  U. B  <->  A. z  e.  D  z  e.  dom  U. B )
7674, 75sylibr 132 1  |-  ( ph  ->  D  C_  dom  U. B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920   A.wal 1283    = wceq 1285   E.wex 1422    e. wcel 1434   {cab 2069   A.wral 2353   E.wrex 2354   _Vcvv 2610    u. cun 2980    C_ wss 2982   {csn 3416   <.cop 3419   U.cuni 3621   Ord word 4145   suc csuc 4148   dom cdm 4391    |` cres 4393   Fun wfun 4946    Fn wfn 4947   ` cfv 4952  recscrecs 5973
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-tr 3896  df-iord 4149  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-res 4403  df-iota 4917  df-fun 4954  df-fn 4955  df-fv 4960
This theorem is referenced by:  tfr1onlembfn  6013
  Copyright terms: Public domain W3C validator