ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem3a Unicode version

Theorem tfrlem3a 6175
Description: Lemma for transfinite recursion. Let  A be the class of "acceptable" functions. The final thing we're interested in is the union of all these acceptable functions. This lemma just changes some bound variables in  A for later use. (Contributed by NM, 9-Apr-1995.)
Hypotheses
Ref Expression
tfrlem3.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlem3.2  |-  G  e. 
_V
Assertion
Ref Expression
tfrlem3a  |-  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
Distinct variable groups:    w, f, x, y, z, F    f, G, w, x, y, z
Allowed substitution hints:    A( x, y, z, w, f)

Proof of Theorem tfrlem3a
StepHypRef Expression
1 tfrlem3.2 . 2  |-  G  e. 
_V
2 fneq12 5186 . . . 4  |-  ( ( f  =  G  /\  x  =  z )  ->  ( f  Fn  x  <->  G  Fn  z ) )
3 simpll 503 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  f  =  G )
4 simpr 109 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  y  =  w )
53, 4fveq12d 5396 . . . . . 6  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
f `  y )  =  ( G `  w ) )
63, 4reseq12d 4790 . . . . . . 7  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
f  |`  y )  =  ( G  |`  w
) )
76fveq2d 5393 . . . . . 6  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  ( F `  ( f  |`  y ) )  =  ( F `  ( G  |`  w ) ) )
85, 7eqeq12d 2132 . . . . 5  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  (
( f `  y
)  =  ( F `
 ( f  |`  y ) )  <->  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
9 simpr 109 . . . . . 6  |-  ( ( f  =  G  /\  x  =  z )  ->  x  =  z )
109adantr 274 . . . . 5  |-  ( ( ( f  =  G  /\  x  =  z )  /\  y  =  w )  ->  x  =  z )
118, 10cbvraldva2 2635 . . . 4  |-  ( ( f  =  G  /\  x  =  z )  ->  ( A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) )  <->  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
122, 11anbi12d 464 . . 3  |-  ( ( f  =  G  /\  x  =  z )  ->  ( ( f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y ) ) )  <-> 
( G  Fn  z  /\  A. w  e.  z  ( G `  w
)  =  ( F `
 ( G  |`  w ) ) ) ) )
1312cbvrexdva 2638 . 2  |-  ( f  =  G  ->  ( E. x  e.  On  ( f  Fn  x  /\  A. y  e.  x  ( f `  y
)  =  ( F `
 ( f  |`  y ) ) )  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w
)  =  ( F `
 ( G  |`  w ) ) ) ) )
14 tfrlem3.1 . 2  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
151, 13, 14elab2 2805 1  |-  ( G  e.  A  <->  E. z  e.  On  ( G  Fn  z  /\  A. w  e.  z  ( G `  w )  =  ( F `  ( G  |`  w ) ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1316    e. wcel 1465   {cab 2103   A.wral 2393   E.wrex 2394   _Vcvv 2660   Oncon0 4255    |` cres 4511    Fn wfn 5088   ` cfv 5093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-br 3900  df-opab 3960  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-res 4521  df-iota 5058  df-fun 5095  df-fn 5096  df-fv 5101
This theorem is referenced by:  tfrlem3  6176  tfrlem5  6179  tfrlemisucaccv  6190  tfrlemibxssdm  6192  tfrlemi14d  6198  tfrexlem  6199
  Copyright terms: Public domain W3C validator