ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlemibacc Unicode version

Theorem tfrlemibacc 6223
Description: Each element of  B is an acceptable function. Lemma for tfrlemi1 6229. (Contributed by Jim Kingdon, 14-Mar-2019.) (Proof shortened by Mario Carneiro, 24-May-2019.)
Hypotheses
Ref Expression
tfrlemisucfn.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
tfrlemisucfn.2  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
tfrlemi1.3  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
tfrlemi1.4  |-  ( ph  ->  x  e.  On )
tfrlemi1.5  |-  ( ph  ->  A. z  e.  x  E. g ( g  Fn  z  /\  A. w  e.  z  ( g `  w )  =  ( F `  ( g  |`  w ) ) ) )
Assertion
Ref Expression
tfrlemibacc  |-  ( ph  ->  B  C_  A )
Distinct variable groups:    f, g, h, w, x, y, z, A    f, F, g, h, w, x, y, z    ph, w, y    w, B, f, g, h, z    ph, g, h, z
Allowed substitution hints:    ph( x, f)    B( x, y)

Proof of Theorem tfrlemibacc
StepHypRef Expression
1 tfrlemi1.3 . 2  |-  B  =  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) }
2 simpr3 989 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  h  =  ( g  u.  { <. z ,  ( F `  g ) >. } ) )
3 tfrlemisucfn.1 . . . . . . . 8  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
4 tfrlemisucfn.2 . . . . . . . . 9  |-  ( ph  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
54ad2antrr 479 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  A. x ( Fun 
F  /\  ( F `  x )  e.  _V ) )
6 tfrlemi1.4 . . . . . . . . . 10  |-  ( ph  ->  x  e.  On )
76ad2antrr 479 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  x  e.  On )
8 simplr 519 . . . . . . . . 9  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  z  e.  x
)
9 onelon 4306 . . . . . . . . 9  |-  ( ( x  e.  On  /\  z  e.  x )  ->  z  e.  On )
107, 8, 9syl2anc 408 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  z  e.  On )
11 simpr1 987 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  g  Fn  z
)
12 simpr2 988 . . . . . . . 8  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  g  e.  A
)
133, 5, 10, 11, 12tfrlemisucaccv 6222 . . . . . . 7  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  ( g  u. 
{ <. z ,  ( F `  g )
>. } )  e.  A
)
142, 13eqeltrd 2216 . . . . . 6  |-  ( ( ( ph  /\  z  e.  x )  /\  (
g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) ) )  ->  h  e.  A
)
1514ex 114 . . . . 5  |-  ( (
ph  /\  z  e.  x )  ->  (
( g  Fn  z  /\  g  e.  A  /\  h  =  (
g  u.  { <. z ,  ( F `  g ) >. } ) )  ->  h  e.  A ) )
1615exlimdv 1791 . . . 4  |-  ( (
ph  /\  z  e.  x )  ->  ( E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) )  ->  h  e.  A )
)
1716rexlimdva 2549 . . 3  |-  ( ph  ->  ( E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `  g )
>. } ) )  ->  h  e.  A )
)
1817abssdv 3171 . 2  |-  ( ph  ->  { h  |  E. z  e.  x  E. g ( g  Fn  z  /\  g  e.  A  /\  h  =  ( g  u.  { <. z ,  ( F `
 g ) >. } ) ) } 
C_  A )
191, 18eqsstrid 3143 1  |-  ( ph  ->  B  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962   A.wal 1329    = wceq 1331   E.wex 1468    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   _Vcvv 2686    u. cun 3069    C_ wss 3071   {csn 3527   <.cop 3530   Oncon0 4285    |` cres 4541   Fun wfun 5117    Fn wfn 5118   ` cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-res 4551  df-iota 5088  df-fun 5125  df-fn 5126  df-fv 5131
This theorem is referenced by:  tfrlemibfn  6225  tfrlemiubacc  6227
  Copyright terms: Public domain W3C validator