ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tposmpt2 Unicode version

Theorem tposmpt2 5926
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposmpt2.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
tposmpt2  |- tpos  F  =  ( y  e.  B ,  x  e.  A  |->  C )
Distinct variable group:    x, y
Allowed substitution hints:    A( x, y)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem tposmpt2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 tposmpt2.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpt2 5544 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
3 ancom 257 . . . . . 6  |-  ( ( x  e.  A  /\  y  e.  B )  <->  ( y  e.  B  /\  x  e.  A )
)
43anbi1i 439 . . . . 5  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C )  <->  ( (
y  e.  B  /\  x  e.  A )  /\  z  =  C
) )
54oprabbii 5587 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B
)  /\  z  =  C ) }  =  { <. <. x ,  y
>. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A )  /\  z  =  C ) }
61, 2, 53eqtri 2080 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A )  /\  z  =  C ) }
76tposoprab 5925 . 2  |- tpos  F  =  { <. <. y ,  x >. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A
)  /\  z  =  C ) }
8 df-mpt2 5544 . 2  |-  ( y  e.  B ,  x  e.  A  |->  C )  =  { <. <. y ,  x >. ,  z >.  |  ( ( y  e.  B  /\  x  e.  A )  /\  z  =  C ) }
97, 8eqtr4i 2079 1  |- tpos  F  =  ( y  e.  B ,  x  e.  A  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 101    = wceq 1259    e. wcel 1409   {coprab 5540    |-> cmpt2 5541  tpos ctpos 5889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2787  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-br 3792  df-opab 3846  df-mpt 3847  df-id 4057  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-fv 4937  df-oprab 5543  df-mpt2 5544  df-tpos 5890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator