ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truanOLD Unicode version

Theorem truanOLD 1277
Description: Obsolete proof of truan 1276 as of 21-Jul-2019. (Contributed by FL, 20-Mar-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
truanOLD  |-  ( ( T.  /\  ph )  <->  ph )

Proof of Theorem truanOLD
StepHypRef Expression
1 simpr 107 . 2  |-  ( ( T.  /\  ph )  ->  ph )
2 a1tru 1275 . . 3  |-  ( ph  -> T.  )
32ancri 311 . 2  |-  ( ph  ->  ( T.  /\  ph ) )
41, 3impbii 121 1  |-  ( ( T.  /\  ph )  <->  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 101    <-> wb 102   T. wtru 1260
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-tru 1262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator