ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  truanfal Unicode version

Theorem truanfal 1309
Description: A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truanfal  |-  ( ( T.  /\ F.  )  <-> F.  )

Proof of Theorem truanfal
StepHypRef Expression
1 truan 1276 1  |-  ( ( T.  /\ F.  )  <-> F.  )
Colors of variables: wff set class
Syntax hints:    /\ wa 101    <-> wb 102   T. wtru 1260   F. wfal 1264
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114  df-tru 1262
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator