ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif2ss Unicode version

Theorem undif2ss 3335
Description: Absorption of difference by union. In classical logic, as in Part of proof of Corollary 6K of [Enderton] p. 144, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif2ss  |-  ( A  u.  ( B  \  A ) )  C_  ( A  u.  B
)

Proof of Theorem undif2ss
StepHypRef Expression
1 undif1ss 3334 . 2  |-  ( ( B  \  A )  u.  A )  C_  ( B  u.  A
)
2 uncom 3126 . 2  |-  ( A  u.  ( B  \  A ) )  =  ( ( B  \  A )  u.  A
)
3 uncom 3126 . 2  |-  ( A  u.  B )  =  ( B  u.  A
)
41, 2, 33sstr4i 3047 1  |-  ( A  u.  ( B  \  A ) )  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \ cdif 2979    u. cun 2980    C_ wss 2982
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator