ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif3ss Unicode version

Theorem undif3ss 3226
Description: A subset relationship involving class union and class difference. In classical logic, this would be equality rather than subset, as in the first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Jim Kingdon, 28-Jul-2018.)
Assertion
Ref Expression
undif3ss  |-  ( A  u.  ( B  \  C ) )  C_  ( ( A  u.  B )  \  ( C  \  A ) )

Proof of Theorem undif3ss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elun 3112 . . . 4  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C
) ) )
2 eldif 2955 . . . . 5  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
32orbi2i 689 . . . 4  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
4 orc 643 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
5 olc 642 . . . . . . 7  |-  ( x  e.  A  ->  ( -.  x  e.  C  \/  x  e.  A
) )
64, 5jca 294 . . . . . 6  |-  ( x  e.  A  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
7 olc 642 . . . . . . 7  |-  ( x  e.  B  ->  (
x  e.  A  \/  x  e.  B )
)
8 orc 643 . . . . . . 7  |-  ( -.  x  e.  C  -> 
( -.  x  e.  C  \/  x  e.  A ) )
97, 8anim12i 325 . . . . . 6  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
106, 9jaoi 646 . . . . 5  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
11 simpl 106 . . . . . . 7  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  x  e.  A )
1211orcd 662 . . . . . 6  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
13 olc 642 . . . . . 6  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
14 orc 643 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1514adantr 265 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1614adantl 266 . . . . . 6  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
1712, 13, 15, 16ccase 882 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
1810, 17impbii 121 . . . 4  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
191, 3, 183bitri 199 . . 3  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
20 elun 3112 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2120biimpri 128 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  B )  ->  x  e.  ( A  u.  B ) )
22 pm4.53r 815 . . . . . 6  |-  ( ( -.  x  e.  C  \/  x  e.  A
)  ->  -.  (
x  e.  C  /\  -.  x  e.  A
) )
23 eldif 2955 . . . . . 6  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
2422, 23sylnibr 612 . . . . 5  |-  ( ( -.  x  e.  C  \/  x  e.  A
)  ->  -.  x  e.  ( C  \  A
) )
2521, 24anim12i 325 . . . 4  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
26 eldif 2955 . . . 4  |-  ( x  e.  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
2725, 26sylibr 141 . . 3  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
2819, 27sylbi 118 . 2  |-  ( x  e.  ( A  u.  ( B  \  C ) )  ->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
2928ssriv 2977 1  |-  ( A  u.  ( B  \  C ) )  C_  ( ( A  u.  B )  \  ( C  \  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 101    \/ wo 639    e. wcel 1409    \ cdif 2942    u. cun 2943    C_ wss 2945
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator