ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq12d Unicode version

Theorem uneq12d 3126
Description: Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Hypotheses
Ref Expression
uneq1d.1  |-  ( ph  ->  A  =  B )
uneq12d.2  |-  ( ph  ->  C  =  D )
Assertion
Ref Expression
uneq12d  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  D ) )

Proof of Theorem uneq12d
StepHypRef Expression
1 uneq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 uneq12d.2 . 2  |-  ( ph  ->  C  =  D )
3 uneq12 3120 . 2  |-  ( ( A  =  B  /\  C  =  D )  ->  ( A  u.  C
)  =  ( B  u.  D ) )
41, 2, 3syl2anc 397 1  |-  ( ph  ->  ( A  u.  C
)  =  ( B  u.  D ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1259    u. cun 2943
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2950
This theorem is referenced by:  disjpr2  3462  diftpsn3  3533  suceq  4167  rnpropg  4828  fntpg  4983  foun  5173  fnimapr  5261  fprg  5374  fsnunfv  5391  fsnunres  5392  tfrlemi1  5977  ereq1  6144  fztp  9042  fzsuc2  9043  fseq1p1m1  9058
  Copyright terms: Public domain W3C validator