ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfidisj Unicode version

Theorem unfidisj 6810
Description: The union of two disjoint finite sets is finite. (Contributed by Jim Kingdon, 25-Feb-2022.)
Assertion
Ref Expression
unfidisj  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )

Proof of Theorem unfidisj
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq2 3224 . . 3  |-  ( w  =  (/)  ->  ( A  u.  w )  =  ( A  u.  (/) ) )
21eleq1d 2208 . 2  |-  ( w  =  (/)  ->  ( ( A  u.  w )  e.  Fin  <->  ( A  u.  (/) )  e.  Fin ) )
3 uneq2 3224 . . 3  |-  ( w  =  y  ->  ( A  u.  w )  =  ( A  u.  y ) )
43eleq1d 2208 . 2  |-  ( w  =  y  ->  (
( A  u.  w
)  e.  Fin  <->  ( A  u.  y )  e.  Fin ) )
5 uneq2 3224 . . 3  |-  ( w  =  ( y  u. 
{ z } )  ->  ( A  u.  w )  =  ( A  u.  ( y  u.  { z } ) ) )
65eleq1d 2208 . 2  |-  ( w  =  ( y  u. 
{ z } )  ->  ( ( A  u.  w )  e. 
Fin 
<->  ( A  u.  (
y  u.  { z } ) )  e. 
Fin ) )
7 uneq2 3224 . . 3  |-  ( w  =  B  ->  ( A  u.  w )  =  ( A  u.  B ) )
87eleq1d 2208 . 2  |-  ( w  =  B  ->  (
( A  u.  w
)  e.  Fin  <->  ( A  u.  B )  e.  Fin ) )
9 un0 3396 . . 3  |-  ( A  u.  (/) )  =  A
10 simp1 981 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  A  e. 
Fin )
119, 10eqeltrid 2226 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  (/) )  e.  Fin )
12 unass 3233 . . . 4  |-  ( ( A  u.  y )  u.  { z } )  =  ( A  u.  ( y  u. 
{ z } ) )
13 simpr 109 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  u.  y )  e.  Fin )
14 vex 2689 . . . . . 6  |-  z  e. 
_V
1514a1i 9 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  _V )
16 simplrr 525 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  ( B  \  y ) )
1716eldifad 3082 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  z  e.  B
)
18 simp3 983 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  i^i  B )  =  (/) )
1918ad3antrrr 483 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  i^i  B )  =  (/) )
20 minel 3424 . . . . . . . 8  |-  ( ( z  e.  B  /\  ( A  i^i  B )  =  (/) )  ->  -.  z  e.  A )
2117, 19, 20syl2anc 408 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  A )
2216eldifbd 3083 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  y )
23 ioran 741 . . . . . . 7  |-  ( -.  ( z  e.  A  \/  z  e.  y
)  <->  ( -.  z  e.  A  /\  -.  z  e.  y ) )
2421, 22, 23sylanbrc 413 . . . . . 6  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  ( z  e.  A  \/  z  e.  y ) )
25 elun 3217 . . . . . 6  |-  ( z  e.  ( A  u.  y )  <->  ( z  e.  A  \/  z  e.  y ) )
2624, 25sylnibr 666 . . . . 5  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  -.  z  e.  ( A  u.  y
) )
27 unsnfi 6807 . . . . 5  |-  ( ( ( A  u.  y
)  e.  Fin  /\  z  e.  _V  /\  -.  z  e.  ( A  u.  y ) )  -> 
( ( A  u.  y )  u.  {
z } )  e. 
Fin )
2813, 15, 26, 27syl3anc 1216 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( ( A  u.  y )  u. 
{ z } )  e.  Fin )
2912, 28eqeltrrid 2227 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  (
y  C_  B  /\  z  e.  ( B  \  y ) ) )  /\  ( A  u.  y )  e.  Fin )  ->  ( A  u.  ( y  u.  {
z } ) )  e.  Fin )
3029ex 114 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  y  e.  Fin )  /\  ( y  C_  B  /\  z  e.  ( B  \  y ) ) )  ->  ( ( A  u.  y )  e.  Fin  ->  ( A  u.  ( y  u.  {
z } ) )  e.  Fin ) )
31 simp2 982 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  B  e. 
Fin )
322, 4, 6, 8, 11, 30, 31findcard2sd 6786 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   _Vcvv 2686    \ cdif 3068    u. cun 3069    i^i cin 3070    C_ wss 3071   (/)c0 3363   {csn 3527   Fincfn 6634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1o 6313  df-er 6429  df-en 6635  df-fin 6637
This theorem is referenced by:  unfiin  6814  prfidisj  6815  tpfidisj  6816  xpfi  6818  iunfidisj  6834  hashunlem  10550  hashun  10551  fsumsplitsnun  11188  fsum2dlemstep  11203  fsumconst  11223
  Copyright terms: Public domain W3C validator