ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unfiin Unicode version

Theorem unfiin 6807
Description: The union of two finite sets is finite if their intersection is. (Contributed by Jim Kingdon, 2-Mar-2022.)
Assertion
Ref Expression
unfiin  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e. 
Fin )  ->  ( A  u.  B )  e.  Fin )

Proof of Theorem unfiin
StepHypRef Expression
1 simpll 518 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  A  e.  Fin )
2 simpr 109 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  e.  Fin )
3 inss1 3291 . . . . . . 7  |-  ( A  i^i  B )  C_  A
43a1i 9 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  C_  A )
5 undiffi 6806 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  A )  ->  A  =  ( ( A  i^i  B )  u.  ( A  \  ( A  i^i  B ) ) ) )
61, 2, 4, 5syl3anc 1216 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  A  =  ( ( A  i^i  B )  u.  ( A  \ 
( A  i^i  B
) ) ) )
7 simplr 519 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  B  e.  Fin )
8 inss2 3292 . . . . . . 7  |-  ( A  i^i  B )  C_  B
98a1i 9 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  i^i  B
)  C_  B )
10 undiffi 6806 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  B )  ->  B  =  ( ( A  i^i  B )  u.  ( B  \  ( A  i^i  B ) ) ) )
117, 2, 9, 10syl3anc 1216 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  B  =  ( ( A  i^i  B )  u.  ( B  \ 
( A  i^i  B
) ) ) )
126, 11uneq12d 3226 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  =  ( ( ( A  i^i  B
)  u.  ( A 
\  ( A  i^i  B ) ) )  u.  ( ( A  i^i  B )  u.  ( B 
\  ( A  i^i  B ) ) ) ) )
13 unundi 3232 . . . 4  |-  ( ( A  i^i  B )  u.  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  ( ( ( A  i^i  B )  u.  ( A  \ 
( A  i^i  B
) ) )  u.  ( ( A  i^i  B )  u.  ( B 
\  ( A  i^i  B ) ) ) )
1412, 13syl6eqr 2188 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  =  ( ( A  i^i  B )  u.  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) ) )
15 diffifi 6781 . . . . . 6  |-  ( ( A  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  A )  ->  ( A  \  ( A  i^i  B ) )  e.  Fin )
161, 2, 4, 15syl3anc 1216 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  \  ( A  i^i  B ) )  e.  Fin )
17 diffifi 6781 . . . . . 6  |-  ( ( B  e.  Fin  /\  ( A  i^i  B )  e.  Fin  /\  ( A  i^i  B )  C_  B )  ->  ( B  \  ( A  i^i  B ) )  e.  Fin )
187, 2, 9, 17syl3anc 1216 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( B  \  ( A  i^i  B ) )  e.  Fin )
19 incom 3263 . . . . . . . . . 10  |-  ( B  i^i  A )  =  ( A  i^i  B
)
2019difeq2i 3186 . . . . . . . . 9  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  ( A  i^i  B ) )
21 difin 3308 . . . . . . . . 9  |-  ( B 
\  ( B  i^i  A ) )  =  ( B  \  A )
2220, 21eqtr3i 2160 . . . . . . . 8  |-  ( B 
\  ( A  i^i  B ) )  =  ( B  \  A )
2322ineq2i 3269 . . . . . . 7  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \ 
( A  i^i  B
) ) )  =  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  A ) )
24 difss 3197 . . . . . . . 8  |-  ( A 
\  ( A  i^i  B ) )  C_  A
25 disjdif 3430 . . . . . . . 8  |-  ( A  i^i  ( B  \  A ) )  =  (/)
26 ssdisj 3414 . . . . . . . 8  |-  ( ( ( A  \  ( A  i^i  B ) ) 
C_  A  /\  ( A  i^i  ( B  \  A ) )  =  (/) )  ->  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \  A ) )  =  (/) )
2724, 25, 26mp2an 422 . . . . . . 7  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \  A ) )  =  (/)
2823, 27eqtri 2158 . . . . . 6  |-  ( ( A  \  ( A  i^i  B ) )  i^i  ( B  \ 
( A  i^i  B
) ) )  =  (/)
2928a1i 9 . . . . 5  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  ( A  i^i  B ) ) )  =  (/) )
30 unfidisj 6803 . . . . 5  |-  ( ( ( A  \  ( A  i^i  B ) )  e.  Fin  /\  ( B  \  ( A  i^i  B ) )  e.  Fin  /\  ( ( A  \ 
( A  i^i  B
) )  i^i  ( B  \  ( A  i^i  B ) ) )  =  (/) )  ->  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )  e. 
Fin )
3116, 18, 29, 30syl3anc 1216 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) )  e. 
Fin )
32 difundir 3324 . . . . . . 7  |-  ( ( A  u.  B ) 
\  ( A  i^i  B ) )  =  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) )
3332ineq2i 3269 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( ( A  u.  B )  \ 
( A  i^i  B
) ) )  =  ( ( A  i^i  B )  i^i  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )
34 disjdif 3430 . . . . . 6  |-  ( ( A  i^i  B )  i^i  ( ( A  u.  B )  \ 
( A  i^i  B
) ) )  =  (/)
3533, 34eqtr3i 2160 . . . . 5  |-  ( ( A  i^i  B )  i^i  ( ( A 
\  ( A  i^i  B ) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  (/)
3635a1i 9 . . . 4  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  i^i  B )  i^i  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  =  (/) )
37 unfidisj 6803 . . . 4  |-  ( ( ( A  i^i  B
)  e.  Fin  /\  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) )  e. 
Fin  /\  ( ( A  i^i  B )  i^i  ( ( A  \ 
( A  i^i  B
) )  u.  ( B  \  ( A  i^i  B ) ) ) )  =  (/) )  ->  (
( A  i^i  B
)  u.  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  e.  Fin )
382, 31, 36, 37syl3anc 1216 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( ( A  i^i  B )  u.  ( ( A  \  ( A  i^i  B ) )  u.  ( B  \ 
( A  i^i  B
) ) ) )  e.  Fin )
3914, 38eqeltrd 2214 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  ( A  i^i  B
)  e.  Fin )  ->  ( A  u.  B
)  e.  Fin )
40393impa 1176 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  e. 
Fin )  ->  ( A  u.  B )  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480    \ cdif 3063    u. cun 3064    i^i cin 3065    C_ wss 3066   (/)c0 3358   Fincfn 6627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1o 6306  df-er 6422  df-en 6628  df-fin 6630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator