![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > unieqd | Unicode version |
Description: Deduction of equality of two class unions. (Contributed by NM, 21-Apr-1995.) |
Ref | Expression |
---|---|
unieqd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
unieqd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieqd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | unieq 3612 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-uni 3604 |
This theorem is referenced by: uniprg 3618 unisng 3620 unisn3 4200 onsucuni2 4309 opswapg 4831 elxp4 4832 elxp5 4833 iotaeq 4899 iotabi 4900 uniabio 4901 funfvdm 5262 funfvdm2 5263 fvun1 5265 fniunfv 5427 funiunfvdm 5428 1stvalg 5794 2ndvalg 5795 fo1st 5809 fo2nd 5810 f1stres 5811 f2ndres 5812 2nd1st 5831 cnvf1olem 5870 brtpos2 5894 dftpos4 5906 tpostpos 5907 recseq 5949 tfrexlem 5977 xpcomco 6360 xpassen 6364 xpdom2 6365 supeq1 6448 supeq2 6451 supeq3 6452 supeq123d 6453 en2other2 6512 dfinfre 8090 sizeinf 9791 sizeennn 9793 |
Copyright terms: Public domain | W3C validator |