![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > uniex | Unicode version |
Description: The Axiom of Union in
class notation. This says that if ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uniex.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
uniex |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uniex.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | unieq 3612 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | eleq1d 2148 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | uniex2 4193 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 4 | issetri 2609 |
. 2
![]() ![]() ![]() ![]() ![]() |
6 | 1, 3, 5 | vtocl 2654 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3898 ax-un 4190 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-rex 2355 df-v 2604 df-uni 3604 |
This theorem is referenced by: uniexg 4195 unex 4196 uniuni 4203 iunpw 4231 fo1st 5809 fo2nd 5810 brtpos2 5894 tfrexlem 5977 xpcomco 6360 xpassen 6364 pnfnre 7211 pnfxr 7222 |
Copyright terms: Public domain | W3C validator |