ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unss2 Unicode version

Theorem unss2 3153
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2  |-  ( A 
C_  B  ->  ( C  u.  A )  C_  ( C  u.  B
) )

Proof of Theorem unss2
StepHypRef Expression
1 unss1 3151 . 2  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )
2 uncom 3126 . 2  |-  ( C  u.  A )  =  ( A  u.  C
)
3 uncom 3126 . 2  |-  ( C  u.  B )  =  ( B  u.  C
)
41, 2, 33sstr4g 3049 1  |-  ( A 
C_  B  ->  ( C  u.  A )  C_  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    u. cun 2980    C_ wss 2982
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-un 2986  df-in 2988  df-ss 2995
This theorem is referenced by:  unss12  3154  difdif2ss  3237  difdifdirss  3343  ord3ex  3981  rdgss  6052  xpiderm  6264
  Copyright terms: Public domain W3C validator