ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unssin Unicode version

Theorem unssin 3220
Description: Union as a subset of class complement and intersection (De Morgan's law). One direction of the definition of union in [Mendelson] p. 231. This would be an equality, rather than subset, in classical logic. (Contributed by Jim Kingdon, 25-Jul-2018.)
Assertion
Ref Expression
unssin  |-  ( A  u.  B )  C_  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) )

Proof of Theorem unssin
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oranim 841 . . . . 5  |-  ( ( x  e.  A  \/  x  e.  B )  ->  -.  ( -.  x  e.  A  /\  -.  x  e.  B ) )
2 eldifn 3106 . . . . . 6  |-  ( x  e.  ( _V  \  A )  ->  -.  x  e.  A )
3 eldifn 3106 . . . . . 6  |-  ( x  e.  ( _V  \  B )  ->  -.  x  e.  B )
42, 3anim12i 331 . . . . 5  |-  ( ( x  e.  ( _V 
\  A )  /\  x  e.  ( _V  \  B ) )  -> 
( -.  x  e.  A  /\  -.  x  e.  B ) )
51, 4nsyl 591 . . . 4  |-  ( ( x  e.  A  \/  x  e.  B )  ->  -.  ( x  e.  ( _V  \  A
)  /\  x  e.  ( _V  \  B ) ) )
6 elin 3166 . . . 4  |-  ( x  e.  ( ( _V 
\  A )  i^i  ( _V  \  B
) )  <->  ( x  e.  ( _V  \  A
)  /\  x  e.  ( _V  \  B ) ) )
75, 6sylnibr 635 . . 3  |-  ( ( x  e.  A  \/  x  e.  B )  ->  -.  x  e.  ( ( _V  \  A
)  i^i  ( _V  \  B ) ) )
8 elun 3124 . . 3  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
9 vex 2613 . . . 4  |-  x  e. 
_V
10 eldif 2992 . . . 4  |-  ( x  e.  ( _V  \ 
( ( _V  \  A )  i^i  ( _V  \  B ) ) )  <->  ( x  e. 
_V  /\  -.  x  e.  ( ( _V  \  A )  i^i  ( _V  \  B ) ) ) )
119, 10mpbiran 882 . . 3  |-  ( x  e.  ( _V  \ 
( ( _V  \  A )  i^i  ( _V  \  B ) ) )  <->  -.  x  e.  ( ( _V  \  A )  i^i  ( _V  \  B ) ) )
127, 8, 113imtr4i 199 . 2  |-  ( x  e.  ( A  u.  B )  ->  x  e.  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) ) )
1312ssriv 3013 1  |-  ( A  u.  B )  C_  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  B ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 102    \/ wo 662    e. wcel 1434   _Vcvv 2610    \ cdif 2980    u. cun 2981    i^i cin 2982    C_ wss 2983
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065
This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator