ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzaddcl Unicode version

Theorem uzaddcl 9374
Description: Addition closure law for an upper set of integers. (Contributed by NM, 4-Jun-2006.)
Assertion
Ref Expression
uzaddcl  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  NN0 )  ->  ( N  +  K )  e.  ( ZZ>= `  M )
)

Proof of Theorem uzaddcl
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5775 . . . . 5  |-  ( j  =  0  ->  ( N  +  j )  =  ( N  + 
0 ) )
21eleq1d 2206 . . . 4  |-  ( j  =  0  ->  (
( N  +  j )  e.  ( ZZ>= `  M )  <->  ( N  +  0 )  e.  ( ZZ>= `  M )
) )
32imbi2d 229 . . 3  |-  ( j  =  0  ->  (
( N  e.  (
ZZ>= `  M )  -> 
( N  +  j )  e.  ( ZZ>= `  M ) )  <->  ( N  e.  ( ZZ>= `  M )  ->  ( N  +  0 )  e.  ( ZZ>= `  M ) ) ) )
4 oveq2 5775 . . . . 5  |-  ( j  =  k  ->  ( N  +  j )  =  ( N  +  k ) )
54eleq1d 2206 . . . 4  |-  ( j  =  k  ->  (
( N  +  j )  e.  ( ZZ>= `  M )  <->  ( N  +  k )  e.  ( ZZ>= `  M )
) )
65imbi2d 229 . . 3  |-  ( j  =  k  ->  (
( N  e.  (
ZZ>= `  M )  -> 
( N  +  j )  e.  ( ZZ>= `  M ) )  <->  ( N  e.  ( ZZ>= `  M )  ->  ( N  +  k )  e.  ( ZZ>= `  M ) ) ) )
7 oveq2 5775 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( N  +  j )  =  ( N  +  ( k  +  1 ) ) )
87eleq1d 2206 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( N  +  j )  e.  ( ZZ>= `  M )  <->  ( N  +  ( k  +  1 ) )  e.  ( ZZ>= `  M )
) )
98imbi2d 229 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( N  e.  (
ZZ>= `  M )  -> 
( N  +  j )  e.  ( ZZ>= `  M ) )  <->  ( N  e.  ( ZZ>= `  M )  ->  ( N  +  ( k  +  1 ) )  e.  ( ZZ>= `  M ) ) ) )
10 oveq2 5775 . . . . 5  |-  ( j  =  K  ->  ( N  +  j )  =  ( N  +  K ) )
1110eleq1d 2206 . . . 4  |-  ( j  =  K  ->  (
( N  +  j )  e.  ( ZZ>= `  M )  <->  ( N  +  K )  e.  (
ZZ>= `  M ) ) )
1211imbi2d 229 . . 3  |-  ( j  =  K  ->  (
( N  e.  (
ZZ>= `  M )  -> 
( N  +  j )  e.  ( ZZ>= `  M ) )  <->  ( N  e.  ( ZZ>= `  M )  ->  ( N  +  K
)  e.  ( ZZ>= `  M ) ) ) )
13 eluzelcn 9330 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  CC )
1413addid1d 7904 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  0 )  =  N )
1514eleq1d 2206 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  0 )  e.  ( ZZ>= `  M
)  <->  N  e.  ( ZZ>=
`  M ) ) )
1615ibir 176 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  0 )  e.  ( ZZ>= `  M )
)
17 nn0cn 8980 . . . . . . . 8  |-  ( k  e.  NN0  ->  k  e.  CC )
18 ax-1cn 7706 . . . . . . . . 9  |-  1  e.  CC
19 addass 7743 . . . . . . . . 9  |-  ( ( N  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  (
( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
2018, 19mp3an3 1304 . . . . . . . 8  |-  ( ( N  e.  CC  /\  k  e.  CC )  ->  ( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
2113, 17, 20syl2anr 288 . . . . . . 7  |-  ( ( k  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  -> 
( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
2221adantr 274 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( N  +  k
)  e.  ( ZZ>= `  M ) )  -> 
( ( N  +  k )  +  1 )  =  ( N  +  ( k  +  1 ) ) )
23 peano2uz 9371 . . . . . . 7  |-  ( ( N  +  k )  e.  ( ZZ>= `  M
)  ->  ( ( N  +  k )  +  1 )  e.  ( ZZ>= `  M )
)
2423adantl 275 . . . . . 6  |-  ( ( ( k  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( N  +  k
)  e.  ( ZZ>= `  M ) )  -> 
( ( N  +  k )  +  1 )  e.  ( ZZ>= `  M ) )
2522, 24eqeltrrd 2215 . . . . 5  |-  ( ( ( k  e.  NN0  /\  N  e.  ( ZZ>= `  M ) )  /\  ( N  +  k
)  e.  ( ZZ>= `  M ) )  -> 
( N  +  ( k  +  1 ) )  e.  ( ZZ>= `  M ) )
2625exp31 361 . . . 4  |-  ( k  e.  NN0  ->  ( N  e.  ( ZZ>= `  M
)  ->  ( ( N  +  k )  e.  ( ZZ>= `  M )  ->  ( N  +  ( k  +  1 ) )  e.  ( ZZ>= `  M ) ) ) )
2726a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( N  e.  ( ZZ>= `  M )  ->  ( N  +  k )  e.  ( ZZ>= `  M )
)  ->  ( N  e.  ( ZZ>= `  M )  ->  ( N  +  ( k  +  1 ) )  e.  ( ZZ>= `  M ) ) ) )
283, 6, 9, 12, 16, 27nn0ind 9158 . 2  |-  ( K  e.  NN0  ->  ( N  e.  ( ZZ>= `  M
)  ->  ( N  +  K )  e.  (
ZZ>= `  M ) ) )
2928impcom 124 1  |-  ( ( N  e.  ( ZZ>= `  M )  /\  K  e.  NN0 )  ->  ( N  +  K )  e.  ( ZZ>= `  M )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   ` cfv 5118  (class class class)co 5767   CCcc 7611   0cc0 7613   1c1 7614    + caddc 7616   NN0cn0 8970   ZZ>=cuz 9319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-addass 7715  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320
This theorem is referenced by:  elfz0add  9893  zpnn0elfzo  9977  mertenslemi1  11297  eftlub  11385
  Copyright terms: Public domain W3C validator