ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vn0m Unicode version

Theorem vn0m 3260
Description: The universal class is inhabited. (Contributed by Jim Kingdon, 17-Dec-2018.)
Assertion
Ref Expression
vn0m  |-  E. x  x  e.  _V

Proof of Theorem vn0m
StepHypRef Expression
1 vex 2605 . 2  |-  x  e. 
_V
2 19.8a 1523 . 2  |-  ( x  e.  _V  ->  E. x  x  e.  _V )
31, 2ax-mp 7 1  |-  E. x  x  e.  _V
Colors of variables: wff set class
Syntax hints:   E.wex 1422    e. wcel 1434   _Vcvv 2602
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-v 2604
This theorem is referenced by:  relrelss  4868
  Copyright terms: Public domain W3C validator