Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocld Unicode version

Theorem vtocld 2660
 Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1
vtocld.2
vtocld.3
Assertion
Ref Expression
vtocld
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem vtocld
StepHypRef Expression
1 vtocld.1 . 2
2 vtocld.2 . 2
3 vtocld.3 . 2
4 nfv 1462 . 2
5 nfcvd 2224 . 2
6 nfvd 1463 . 2
71, 2, 3, 4, 5, 6vtocldf 2659 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wb 103   wceq 1285   wcel 1434 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-3an 922  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-v 2612 This theorem is referenced by:  funfvima3  5444  frec2uzuzd  9536
 Copyright terms: Public domain W3C validator